<u>Answer:</u>
<em>To relate the type of box material to the warmth inside the box
</em>
<u>Explanation:</u>
3 boxes are made with three different materials glass, plastic and Aluminium. Thermal conductivity is different for different materials. thermal conductors allow easy flow of heat through them and insulators allow minimal or no flow of heat through them.
Thus the amount by which an object gets heated up depends on the value of its conductivity. In this experiment, glass and plastic are insulators and aluminium is a conductor. Among glass and plastic, plastic is a better insulator.
<em>Thus the heat contained in the boxes will be of the order </em>Aluminium>glass>plastic.
This is another one of those muddy misleading questions, followed by
a muddy group of choices from which an answer must be selected.
a). is absurd. There's no such thing as a "balanced force", only
a balanced group of forces.
b). is probably the choice the question is aiming for.
c). is not so. The engines of an airplane do plenty of work lifting the plane
off the ground, although the force of the engines is never directed upward.
d). is really awkward. The object's motion is almost never the cause of the force.
The force is almost always the cause of the object's motion.
Now for the big 800-lb gorilla in the room: No moving object needs to be involved
in order for energy to be flowing or work to be getting done.
-- A radio wave radiates through space. Straighten out a wire coat-hanger and
stick it up in the air where the radio wave can pass by it. Electrical current flows
through the wire, and you can drain the electrical energy out the bottom of it.
-- A light bulb is shining. Some distance away, something it's shining on
gets warm, because of the heat energy that has shot across to it from the
light bulb and soaked into it.
-- A lightning bolt jumps from the ground to a passing cloud. Or, if you feel
more comfortable with it, a lightning bolt jumps from a cloud to the ground.
It doesn't matter. Either way, there's enough energy splashing around to
ignite houses, zap TVs and computers, melt concrete, vaporize water, and
light up a city. Although nothing is moving.
Answer:
Explanation:
an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg