Answer:
The car must have a speed of 25 kilometres per hour to stop after moving 7 metres.
Step-by-step explanation:
Let be
, where
is the stopping distance measured in metres and
is the speed measured in kilometres per hour. The second-order polynomial is drawn with the help of a graphing tool and whose outcome is presented below as attachment.
The procedure to find the speed related to the given stopping distance is described below:
1) Construct the graph of
.
2) Add the function
.
3) The point of intersection between both curves contains the speed related to given stopping distance.
In consequence, the car must have a speed of 25 kilometres per hour to stop after moving 7 metres.
Answer:
Simplify inside the parentheses by dividing coefficients, subtracting the exponents on like bases, and raising the resulting expression to the –3 power. Then, write bases with positive exponents.
Raise the numerator and denominator to the –3 power. Then, using the power of a power property, multiply the exponents. Divide the coefficients and subtract the exponents on like bases, then write with positive exponents.
Step-by-step explanation:
Answer:
bc c is too obvious a is Stoopid and d is way too much
Answer:
Step-by-step explanation:
y = e^(-3x)
Stretch by factor of 4
y = 4e^(-3x)
Reflect across y axis
y = 4e^(3x)
Shift up by 5
y = 4e^(3x) + 5