Answer:
Explanation:
Force on electron in an electric field E = eE where E is electric field .
acceleration = eE / m where m is mass of electron .
Putting the values
4 x 10⁶ = 1.6 x 10⁻¹⁹ x E / 9.1 x 10⁻³¹
E = 22.75 x 10⁻⁶ N/C
The direction of electric field will be towards west ( opposite to east )
because of negative charge on electron .
Answer:
The correct answer is 
Explanation:
The formula for the electron drift speed is given as follows,

where n is the number of of electrons per unit m³, q is the charge on an electron and A is the cross-sectional area of the copper wire and I is the current. We see that we already have A , q and I. The only thing left to calculate is the electron density n that is the number of electrons per unit volume.
Using the information provided in the question we can see that the number of moles of copper atoms in a cm³ of volume of the conductor is
. Converting this number to m³ using very elementary unit conversion we get
. If we multiply this number by the Avagardo number which is the number of atoms per mol of any gas , we get the number of atoms per m³ which in this case is equal to the number of electron per m³ because one electron per atom of copper contribute to the current. So we get,

if we convert the area from mm³ to m³ we get
.So now that we have n, we plug in all the values of A ,I ,q and n into the main equation to obtain,

which is our final answer.
Y - yo = Vo*t - g * (t^2) / 2
Vo = - 9.0 m/s
t = 0.50 s
=> y - yo = -9.0 m/s * 0.5 s - 9.8 m/s^2 * (0.5s)^2 / 2 = - 4.5m - 1.225m = - 5.725 m.
Answer: option c) - 5.7
Answer: The major challenges are as
1) understanding of the plasma: Plasma is a soup like mixture of subatomic particles of different atoms nuclei and electrons that are shattered apart by the temperature at which plasma is formed. further research is needed to understand the behavior of plasma so that it can be put to a proper use.
2) Confinement of plasma: Once we get the plasma we need to hold it so that we can obtain heat from it to drive a steam turbine but the sheer temperature of plasma is in millions of Celsius thus currently making it impossible to confine conventionally. Scientists use a loop of electric and magnetic fields to keep it in circulatory like manner so that it can be studied.
3) finally to obtain electricity from the plasma it should be stable to produce electricity. But currently to obtain pressure, temperature so that we have a sustained supply is highly difficult in technical and economical aspects.
Inertial confinement: In order to get the nuclei of atoms close enough for fusion this type of method used compression of the nuclei into highly small volumes.This is accomplished by use of lasers which are directed towards the fuel pellets that implode and travel towards other nuclei making fusion possible. It's main advantage is that it requires lesser time to initiate fusion but the disadvantage being that a large power is used to fire the lasers and the lasers should all hit the small target.
Magnetic Confinement: In this method we use a magnetic and electric fields in a properly designed space to keep the plasma in motion. In motion the nuclei of the atoms come close enough to initiate fusion.It's advantage being less power is required to start the process as compared to inertial confinement and the disadvantage being that plasma confinement is currently not properly understood.