Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA
Answer:
✓ A cyclone device accumulates fine particulates from the air by making a dirty air stream flow in a spiral path inside a cylindrical chamber.
✘ It consists of several long and narrow fabric filter bags suspended upside-down in a large enclosure.
✓ When dirty air enters the chamber, the larger particulates strike the chamber wall and fall into a conical dust hopper at the bottom.
✘ Fans blow dirt-filled air upward from the bottom of the enclosure, trapping dirt particles inside the filter bags and releasing clean air from the top.
✓ The top of the chamber has an outlet that lets out cleaned air.
Basically, any of these choices that have the word "filter" are wrong. The point of the cyclone device is to separate the particles without the use of filters. You can tell the right answers based on the picture attached below.
Answer: its 50
Explanation:
im waffling does anybody have syrup
Answer:
F > W * sin(α)
Explanation:
The force needed for the box to start sliding up depends on the incline (α).
The external forces acting on the box would be the weight, the normal reaction and the lifting force that is applied to make it slide up.
These forces can be decomposed on their normal and tangential (to the slide plane) components.
The weight will be split into
Wn = W * cos(α) (in normal direction)
Wt = W * sin(α) (in tangential direction)
The normal reaction will be alligned with the normal axis, and will be equal to -Wn
N = -W* cos(α) (in normal direction)
To mke the box slide up, a force must be applied, that is opposite to the tangential component of the weight and at least a little larger
F > |-W * sin(α)| (in tangential direction)
The answer is either c or b