Answer:
V= 6.974 m/s
Explanation:
Component( box) weight acting parallel and down roof 88(sin39.0°)=55.4 N
Force of kinetic friction acting parallel and up roof = 18.0 N
Fnet force acting on tool box acting parallel and down roof
Fnet= 55.4 - 18.0
Fnet=37.4 N
acceleration of tool box down roof
a = 37.4(9.81)/88.0
a= 4.169 m/s²
d = 4.90 m
t = √2d/a
t= √2(4.90)/4.169
t= 1.662 s
V = at
V= 4.169(1.662)
V= 6.974 m/s
External = R
Internal = r
Volume of hemisperical = 2/3 π(R³-r³)
V= 2/3 π(9.1³ - 8.4³)
V= 336.9 cm³
<h2>
Answer:50
</h2>
Explanation:
Let
be the airspeed.
Let
be the cross wind speed.
We know that,ground speed is the vector sum of airspeed and cross wind speed and airspeed is perpendicular to cross wind speed.
If
and
are two perpendicular vectors,the resultant vector has the magnitude 
Given,

So,the ground speed is 
Answer:
The magnitude of the acceleration is 
The direction is
north of east
Explanation:
From the question we are told that
The force exerted by the wind is 
The force exerted by water is 
The mass of the boat(+ crew) is
Now Force is mathematically represented as

Now the acceleration towards the north is mathematically represented as

substituting values


Now the acceleration towards the east is mathematically represented as

substituting values


The resultant acceleration is

substituting values


The direction with reference from the north is evaluated as
Apply SOHCAHTOA

![\theta = tan ^{-1} [\frac{a_e}{a_n } ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B%5Cfrac%7Ba_e%7D%7Ba_n%20%7D%20%5D)
substituting values
![\theta = tan ^{-1} [\frac{0.808}{1.269 } ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B%5Cfrac%7B0.808%7D%7B1.269%20%7D%20%5D)
![\theta = tan ^{-1} [0.636 ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B0.636%20%5D)

Answer:
C. The decrease in speed as the wave approaches shore.
Explanation:
The waves break when approaching the shore because the depth decreases. Thus, the wave travels more slowly and increases its height. There comes a time when the part of the wave on the surface travels faster than the one that travels under water, the ridge destabilizes and falls against the ground.