A solid object is found to weigh 4.784.78n in air. when it is weighed while fully immersed in water, its apparent weight is 2.482.48n. 983 is the density of the object.
The substance's density is defined as its mass per unit of volume (volumetric mass density or specific mass). Although the Latin letter D may also be used, the symbol for density that is most usually used is (the lower case Greek letter rho). where V is the volume, is the density, and m is the mass. Weight per unit volume is a common informal definition of density, however this is incorrect scientifically; the actual term is specific weight. The US oil and gas industry serves as one illustration of this. A pure substance's mass concentration in numbers is equal to its density. To make density comparisons between different systems of units easier, it is occasionally replaced by the dimensionless quantity "relative density" or "specific gravity," which is the ratio of the density of the material to that of a standard material, usually water. If a substance's relative density to water is less than one, it will float in it. Temperature and pressure have an impact on a substance's density. This variation is frequently not very noticeable for solids and liquids, but it is very noticeable for gases. As pressure is applied, an object's density rises, which reduces the object's volume. With a few rare exceptions, as temperature increases, a substance's density decreases as its volume grows.
To know more about density please refer: brainly.com/question/15164682
#SPJ4
Answer:
m = 15.15 kg
Explanation:
Newton's Second Law of motion states that when an unbalanced force is applied on a body, an acceleration is produced in it in the direction of force. The component of force along the horizontal direction here, will be given by the Newton's Second Law as:
Fx = ma
F Cosθ = ma
where,
F = Magnitude of Force = 85 N
θ = Angle with horizontal = 27°
m = mass of object = ?
a = acceleration of object = 5 m/s²
Therefore,
85 N Cos 27° = m(5 m/s²)
m = 75.73 N/5 m/s²
<u>m = 15.15 kg</u>
Answer:
The gravitational potential energy of the man
= mass of the man(m) × gravitational acceleration(g) × height (h)
80 Kg × 9.8 m/s^2 × 60 m
80 × 9.8 x 60 ( kg ×m^2/s^2)
47040 Joules (ans)
Hope it helps
Answer:
Explanation:
This means that the ratio of the speed of the incident beam of light in a vacuum to the speed of light in the glass is 1.5
In summary, gravity is the force that creates the pressure to fuse atoms, which makes the stars shine. Eventually the temperature is high enough that the star starts fusing hydrogen into helium. When the outward pressure produced by the heating of the gas by fusion energy balances gravity, a stable star is formed.