Answer:
70.6 %
Explanation:
First step, we define the reaction:
2P + 3Br₂ → 2PBr₃
We determine the moles of reactant:
35 g . 1mol / 159.8 g = 0.219 moles
We assume, the P is in excess, so the bromine is the limiting reagent.
3 moles of Br₂ can produce 2 moles of phophorous tribromide
Then, 0.219 moles may produce (0.219 . 2) /3 = 0.146 moles of PBr₃
We convert moles to mass:
0.146 mol . 270.67 g /mol = 39.5 g
That's the 100 % yield reaction, also called theoretical yield. The way to determine the % yield is:
(Yield produced / Thoeretical yield) . 100
(27.9 / 39.5) . 100 = 70.6 %
This is asking for the absolute humidity. So if the relative humidity is 65 % and the air temperature is 30 then we need to have in mind the barometric pressure which will be 760. The humidity in the air will be 0.020 kg/m3. In order to know this we calculate it eith the mass of water vapour in a unit volume of air. This is a measure of the actual water vapour content of the air. the for mula would go like this: AH = Mv / V.
Answer ; The correct answer is : 346 m/s .
Sound is a type of longitudinal wave , which is produced when a matter compress or refracts .
Speed of sounds depends on factors like medium , density , temperature etc .
Effect of Temperature on speed of sounds :
When the temperature increases , molecules gains energy and they starts vibrating and with higher temperature vibration becomes fast . So the waves of sounds can travel faster due to faster vibrations . Hence , speed of sounds is directly proportional to the temperature or speed of sounds increases with increase in temperature .
The speed of sounds at 0⁰C is 331 
The relation between speed of sound and temperature is given as :

Given : Temperature = 25 ⁰ C
Plugging values in formula =>



No, the properties of a substance are not affected by the amount of a substance.