(a) The spring constant is 500 N/m.
(b) The extension of the spring when 25 N force is applied is 0.05 m.
(c) The applied force to cause an extension of 5 mm is 2.5 N.
The given parameters:
- Applied force, F = 10 N
- Extension of the spring, x = 20 mm
The spring constant is calculated as follows;

The extension of the spring when 25 N force is applied is calculated as follows;

The applied force to cause an extension of 5 mm is calculated as follows;

Learn more about Hook's law here: brainly.com/question/12253978
d. Maintain constant velocity
Explanation:
A constant velocity leads to no acceleration.
Acceleration is defined as the change in velocity with time:
Acceleration = 
If there is no change in velocity i.e constant velocity.
At constant velocity, the change in velocity is 0.
If we put zero in the equation above, we will obtain an acceleration value of 0.
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
Answer:

Explanation:
Kinetic energy is energy due to motion. The formula is half the product of mass and velocity squared.

The mass of the roller coaster car is 2000 kilograms and the car is moving 10 meters per second.
Substitute these values into the formula.

Solve the exponent.
- (10 m/s)²= 10 m/s * 10 m/s= 100 m²/s²

Multiply the first two numbers together.

Multiply again.

- 1 kilogram square meter per square second is equal to 1 Joule.
- Our answer of 100,000 kg*m²/s² is equal to 100,000 Joules.

The roller coaster car has <u>100,000 Joules</u> of kinetic energy.
Answer:
The time is
Explanation:
From the question we are told that
The period of the circuit is 
Generally voltage maximization of the capacitor occurs during the voltage minimization of the inductor and vise versa
So the time between the voltage maximization of the capacitor and that of the inductor is mathematically represented as

=> 
=>
Effort force
Explanation:
When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.
Learn More
Mechanical advantage in Levers : brainly.com/question/11600677
Keywords : Levers, fulcrum, position
#LearnwithBrainly