Answer:
A = 2 cm
, λ = 8 cm
Explanation:
The amplitude of a wave is the maximum height it has, in this case the height is measured by the vertical ruler,
We are told the balance point is in the reading of 5 cm, that the maximum reading is 3 cm and the Minimum reading is 7 cm. Therefore, the distance from the ends of the ridge to the point of equilibrium is
d = 7-5 = 2 cm
d = 5-3 = 2 cm
A = 2 cm
The wavelength is the minimum horizontal distance for which the wave is repeated, that is measured by the horizontal ruler.
The initial reading for 4 cm and the final reading for 8 cm, this distance corresponds to a crest of the wave, the complete wave is formed by two crests whereby the wavelength is twice this value
Δx = 8-4 = 4 cm
λ = 2 Δx
λ = 8 cm
Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.
Option D) A drop of mercury is both a pure substance and and element.
Happy to assist you !
Answer:
The correct option is;
a- sea surface temperature anomaly, in degrees Celsius
Explanation:
From the diagram related to the question we have two graphs super imposed of Sea surface temperature anomaly, in degrees Celsius and cholera incidence anomaly (%) both plotted against time in years.
On the left the y-axis represents the sea surface temperature anomaly while on the right, the y-axis represents the cholera incidence anomaly (%).
The display of the graph shows the sea surface temperature anomaly in blue.