Answer:
Wm = 97.2 [N]
Explanation:
We must make it clear that mass and weight are two different terms, the mass is always preserved that is to say this will never vary regardless of the location of the object. While weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 60 [kg]
g = gravity acceleration = 10 [m/s²]
But in order to calculate the weight of the body on the moon, we must know the gravitational acceleration of the moon. Performing a search of this value on the internet, we find that the moon's gravity is.
gm = 1.62 [m/s²]
Wm = 60*1.62
Wm = 97.2 [N]
Answer:
11250 seconds or 187.5 mins
Explanation:
The formula to be used here is that of speed.
Speed (in m/s) = distance (meter) ÷ time (secs)
The speed provided is 32 meters per second
The distance provided will have to be converted to meters; 360 km = 360 × 1000 = 360000 meters
Thus,
32 = 360000 ÷ time
time = 360000 ÷ 32
time = 11250 seconds or 187.5 mins
It will take Naomi 11250 seconds to get to New York
Answer:
P = 4.5 watts
Explanation:
Given that,
EMF of the circuit, E = 3 volt
The resistance of the resistors, R = 2 ohms
We need to find the power of this circuit. The relation between power, emf and resistance is given by the formula as follows :

Substitute all the values,

So, the power of this circuit is equal to 4.5 watts.
Answer:
0.173 m.
Explanation:
The fundamental frequency of a closed pipe is given as
fc = v/4l .................. Equation 1
Where fc = fundamental frequency of a closed pipe, v = speed of sound l = length of the pipe.
Making l the subject of the equation,
l = v/4fc ................ Equation 2
also
v = 331.5×0.6T ................. Equation 3
Where T = temperature in °C, T = 18.0 °c
Substitute into equation 3
v = 331.5+0.6(18)
v = 331.5+10.8
v = 342.3 m/s.
Also given: fc = 494 Hz,
Substitute into equation 2
l = 342.3/(4×494)
l = 342.3/1976
l =0.173 m.
Hence the length of the organ pipe = 0.173 m.
Answer:
4 gamma closest thing to this V
Explanation:
Technetium. Tc is a very versatile radioisotope, and is the most commonly used radioisotope tracer in medicine.