Answer:
The acceleration is 6 [m/s^2]
Explanation:
We can find the acceleration of the roller coaster using the kinematic equation for uniformly accelerated motion.
![v_{f} =v_{i} + a*t\\where:\\v_{f} = final velocity = 22 [m/s]\\v_{i} = initial velocity = 4 [m/s]\\t = time = 3 [s]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2B%20a%2At%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%20%3D%20final%20velocity%20%3D%2022%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%20%3D%20initial%20velocity%20%3D%204%20%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%3D%203%20%5Bs%5D%5C%5C)
Now replacing the values we have:
![a=\frac{v_{f} - v_{i} }{t} \\a=\frac{22 - 4 }{3}\\a = 6 [m/s^{2} ]](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_%7Bf%7D%20-%20v_%7Bi%7D%20%7D%7Bt%7D%20%5C%5Ca%3D%5Cfrac%7B22%20-%204%20%7D%7B3%7D%5C%5Ca%20%3D%206%20%5Bm%2Fs%5E%7B2%7D%20%5D)
<span>reflection, rotation, translation</span>
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.