Answer:
Explanation:
Let the magnetic field be B = B₁i + B₂j + B₃k
Force = I ( L x B ) , I is current , L is length and B is magnetic field .
In the first case
force = - 2.3 j N
L = 2.5 i
puting the values in the equation above
- 2.3 j = 8 [ 2.5 i x ( B₁i + B₂j + B₃k )]
= - 20 B₃ j + 20 B₂ k
comparing LHS and RHS ,
20B₃ = 2.3
B₃ = .115
B₂ = 0
In the second case
L = 2.5 j
Force = I ( L x B )
2.3i−5.6k = 8 ( 2.5 j x (B₁i + B₂j + B₃k )
= - 20 B₁ k + 20B₃ i
2.3i−5.6k = - 20 B₁ k + 20B₃ i
B₃ = .115
B₁ = .28
So magnetic field B = .28 i + .115 B₃
Part A
x component of B = .28 T
Part B
y component of B = 0
Part C
z component of B = .115 T .
Answer:
Derived units are derived from these 7 base units. Derived units are dependent on the base units and are not independent of each other. ... Mass has SI units of kg, distance is measured in m and t has the SI unit of second. Thus, SI unit of force is kg.
First let's convert the time in seconds:

The current is defined as the quantity of charge flowing through a certain section of a circuit per unit of time:

Using I=10 A, and

, we can find the amount of charge flown through the hair dryer in this time:

The charge of a single electron is

, so the number of electrons flown through the hair dryer is the total charge divided by the charge of a single electron:
4275.
To find momentum you just have to multiply mass and velocity.
I am pretty sure it's solids