Chlorine gas (Cl2) and sodium (Na) make sodium chloride (NaCl) which we also know as table salt.
2Na + Cl2 = 2NaCl
Answer:
Regulus
Explanation:
Which is 77.63 light years away
Answer:
The change in momentum is 28265.71 kg-m/s.
Explanation:
Given that,
Mass of a car, m = 877 kg
Initial velocity of the car, u = 0 (at rest)
Final velocity of the car, v = 116 km/h = 32.23 m/s
Time, t = 0.951 s
We need to find the change in momentum produced by the force. It can be calculated as the difference of final momentum and the initial momentum.

So, the change in momentum is 28265.71 kg-m/s.
Hi there!
Voltage in a series can be expressed by the following:

In words, the total voltage is equal to the sum of the individual voltage drops in a SERIES circuit.
We can solve for the total voltage:

Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²