Answer:
Toward each other teehee merry christmas
Explanation:
<span>Astronomers are able to determine facts about the composition of these moons by examining the nature of light that is reflected from their surfacy using a method called spectroscopy. This process works because different materials tend to reflect light at different wavelengths So, by observing at which wavelengths a planetary body reflects light, astronomers are able to estimate its composition.</span>
I thinks it’s A, tell me if you get it right
To verify the identity, we can make use of the basic trigonometric identities:
cot θ = cos θ / sin θ
sec θ = 1 / cos <span>θ
csc </span>θ = 1 / sin θ<span>
Using these identities:
</span>cot θ ∙ sec θ = (cos θ / sin θ ) (<span> 1 / cos </span><span>θ)
</span>
We can cancel out cos <span>θ, leaving us with
</span>cot θ ∙ sec θ = 1 / sin θ
cot θ ∙ sec θ = = csc <span>θ</span>
Answer:
Mass of the car is independent of gravity
Explanation:
Here, we want to state the reason why even though we have the acceleration due to gravity absent on the moon, it is still difficult to accelerate a car on a level horizontal level on the moon.
The answer to this is that the mass of the car that we want to accelerate is independent of gravity.
Had it been that gravity has an effect on the mass of the said car, then we might conclude that it will not be difficult to accelerate the car on a horizontal surface on the moon.
But due to the fact that gravity has no effect on the mass of the car to be accelerated, then the problem we have on earth with accelerating the car is the same problem we will have on the moon if we try to accelerate the car on a horizontal level surface.