Space surrounding magnet is called the magnetic field. In this field we can encounter magnetic force. Magnet attraction occurs when poles are unlike and is caused by magnetic force. It means that poles should have opposite values.
If an object is changing it is called velocity - whether by a constant amount or a varying
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
Explanation:
It is given that,
length of steel wire, l = 0.75 m
Mass of the wire, m = 12 g = 0.012 kg
Fundamental frequency, f = 120 Hz
We need to find the mass of the anvil (m'). The fundamental frequency is given by :

v is the speed of the mass
Speed is given by :

is the mass per unit length,

T is the tension in the wire,



T = 518.4 N
Tension in the wire, T = m' g


m' = 52.89 kg
So, the mass of the anvil is 52.89 kg. Hence, this is the required solution.
Answer
4.8 N
If the box is moving with a constant velocity, then we can say that the system is in equilibrium. This is because if the external force (F->) was greater than other forces the box would be accelerating. This tells us that this force (F->) is just enough to overcome friction and so it must be equal to 4.8 N.
The normal force has no effect to the horizontal velocities or forces. It is equal to -Weight. That is -74 N. The negative sign shows that the force is in opposite direction.