Answer:581.87 K
Explanation:
Given
Sphere is melted to form a square
Let the radius of sphere be r and square has a side a
Therefore

Surface area of sphere 
Surface area of cube 
Total emmisive remains same
Thus 







It’s true the acceleration of falling objects on earth due to gravity is 98ms2
Answer:
Option C
Explanation:
We have to check range of all options first
For A:
Largest Value: 5
Smallest Value: 1
So range = Largest value - smallest value
5-1 = 4
For B:
Largest Value: 6
Smallest Value: 4
Range = 6-4 = 2
For C:
Largest Value: 9
Smallest Value: 1
Range = 9-1 = 8
For D:
Largest Value = 9
Smallest Value = 3
Range = 9-3=6
So, the data set in option C has the largest range
Ignoring air resistance, the Kinetic energy before hitting the ground will be equal to the potential energy of the Piton at the top of the rock.
So we have 1/2 MV^2 = MGH
V^2 = 2GH
V = âš2GH
V = âš( 2 * 9.8 * 325)
V = âš 6370
V = 79.81 m/s