The task is to show that the right side of the equation has units of [Time], just like the left side has.
The right side of the equation is . . . 2 π √(L/G) .
We can completely ignore the 2π since it has no units at all, so it has no effect on the units of the right side of the equation. Now the task is simply to find the units of √(L/G) .
L . . . meters
G . . . meters/sec²
(L/G) = (meters) / (meters/sec²)
(L/G) = (meters) · (sec²/meters)
(L/G) = (meters · sec²) / (meters)
(L/G) = sec²
So √(L/G) = seconds = [Time]
THAT's what we were hoping to prove, and we did it !
The shape of a liquid can change because the atoms in it are not close together to form a solid, they flow freely.
We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.
Electromagnets are used for various purposes but I fathom in this instance, the questioner is asking about how electromagnetics can be used to attraction or repulsion.
Example, electromagnets are used for attraction in cranes which attach them to containers in order to lift them.
Meanwhile, Maglev trains use electromagnets repulsive properties.
Answer:

Explanation:
We know that acceleration is change in velocity over time.


v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.

Add u to both sides.
