1.12 m/s is the velocity. You can get the velocity of a wave by multiplying the frequency and wavelength together. The product is the velocity.
The wrong statement is that sound waves created vibration Option A.
<h3>What are sound waves?</h3>
Sound is a type of waves that moves in compressions and rare factions. This implies that sound is a mechanical wave. Recall that a mechanical wave is one that requires a material medium for propagation. Now we know that if we set the medium into vibration, that is when the sound waves begins to vibrate. That brings us to the idea that it is the vibration that causes the sound waves and not the sound waves that creates the vibration.
Thus, knowing that sound is a mechanical wave which moves through solids liquids and gas and that the vibration of the source of sound is what causes the air to vibrate, we conclude that the wrong statement is that sound waves created vibration Option A.
Learn more about sound waves:brainly.com/question/11797560
#SPJ1
Answer:
a is the answer to the question
D.<span>Wave 3 resulted from constructive interference, and Wave 4 resulted from destructive interference.
</span>
Positioning your Slinky along any direction different from its initial position will affect your reading, because there will be change in the magnetic field.
<h3>Effect of magnet on Slinky</h3>
If the Slinky is made of an iron alloy, it can be magnetized by itself. Moving the Slinky around can cause a change in the magnetic field, even if no current is flowing.
When there is a change in the magnetic field, the reading changes.
At any point, you change the orientation of the Slinky, you will need to zero the reading or adjust the Slinky back to its initial position, even if the sensor does not move.
Thus, Positioning your Slinky along any direction that is different to its initial position will affect your reading because there will be change in the magnetic field.
Learn more about magnetic field here: brainly.com/question/7802337