Answer:
53 cm³
Explanation:
When the student used dilute sulfuric acid, the reaction was complete after 60 s, because no more hydrogen was formed in the next 10 s.
The reaction would go faster if the student used a more concentrated acid, but 53 cm³ of hydrogen is the most that would form.
Answer:
A dominant allele produces a dominant phenotype in individuals who have one copy of the allele, which can come from just one parent. For a recessive allele to produce a recessive phenotype, the individual must have two copies, one from each parent.
Explanation:
A dominant allele becomes a trait even if just one copy of it is present. A recessive allele does not become a trait unless both copies of the gene, one from mom and one from dad, are present. If one dominant allele and one recessive allele are present, the dominant allele trait will be expressed.
Only individuals with an aa genotype will express a recessive trait; therefore, offspring must receive one recessive allele from each parent to exhibit a recessive trait.
Pure metals possess few important physical and metallic properties, such as melting point, boiling point, density, specific gravity, high malleability, ductility, and heat and electrical conductivity. These properties can be modified and enhanced by alloying it with some other metal or nonmetal, according to the need.
Alloys are made to:
Enhance the hardness of a metal: An alloy is harder than its components. Pure metals are generally soft. The hardness of a metal can be enhanced by alloying it with another metal or nonmetal.
Lower the melting point: Pure metals have a high melting point. The melting point lowers when pure metals are alloyed with other metals or nonmetals. This makes the metals easily fusible. This property is utilized to make useful alloys called solders.
Enhance tensile strength: Alloy formation increases the tensile strength of the parent metal.
Enhance corrosion resistance: Alloys are more resistant to corrosion than pure metals. Metals in pure form are chemically reactive and can be easily corroded by the surrounding atmospheric gases and moisture. Alloying a metal increases the inertness of the metal, which, in turn, increases corrosion resistance.
Modify color: The color of pure metal can be modified by alloying it with other metals or nonmetals containing suitable color pigments.
Provide better castability: One of the most essential requirements of getting good castings is the expansion of the metal on solidification. Pure molten metals undergo contraction on solidification. Metals need to be alloyed to obtain good castings because alloys