Proof of the experiment and what happened during the experiment.
Explanation:
<em>(</em><em>P1V1</em><em>)</em><em>/</em><em>T1</em><em>=</em><em>(</em><em>P2V2</em><em>)</em><em>/</em><em>T2</em>
<em>(</em><em>1</em><em>5</em><em>X</em><em>5</em><em>)</em><em>/</em><em>2</em><em>9</em><em>7</em><em>=</em><em>(</em><em>p2x2</em><em>.</em><em>5</em><em>)</em><em>/</em><em>4</em><em>7</em><em>3</em>
<em>p2</em><em>=</em><em>47.78cmHg</em>
Answer:
d) The dilution equation works because the number of moles remains the same.
Explanation:
Let’s say that you have 1 mol of a solute in I L of solution. The concentration is 1 mol·L⁻¹. and <em>M</em>₁<em>V</em>₁ = 1 mol.
Now, you dilute the solution to a volume of 2 L. You still have 1 mol of solute, but in 2 L of solution. The new concentration is 0.5 mol·L⁻¹.
The volume has doubled, but the volume has halved, and <em>M</em>₂<em>V</em>₂ = 1 mol.
b) <em>Wrong</em>. The molar concentration changes on dilution.
c) <em>Wrong</em>. The volume changes on dilution.
a) <em>Wrong</em>, although technically correct, because if the moles don’t change, the mass doesn’t change either. However, the formula <em>M</em>₁<em>V</em>₁ has units mol·L⁻¹ × L = mol. Thus, in the formula, it is moles that are constant.
The half-life of polonium-210, given that it decays from 98.3 micrograms to 12.3 micrograms in 414 days is 138 days
<h3>How to determine the number of half-lives </h3>
- Original amount (N₀) = 98.3 micrograms
- Amount remaining (N) = 12.3 micrograms
- Number of half-lives (n) =?
2ⁿ = N₀ / N
2ⁿ = 98.3 / 12.3
2ⁿ = 8
2ⁿ = 2³
n = 3
<h3>How to determine the half life </h3>
- Number of half-lives (n) = 3
- Time (t) = 414 days
- Half-life (t½) = ?
t½ = t / n
t½ = 414 / 3
t½ = 138 days
Learn more about half life:
brainly.com/question/26374513
#SPJ1
the answer is 0.000097 KM