Answer: Option (B) is the correct answer.
Explanation:
When a fatty acid contains high number of double bonds then its unsaturation will also be high and hence, it will consume greater number of equivalents of hydrogen.
In corn oil, there are no unsaturated sites are present.
In olive oil, there is one unsaturated site with majority of oleic acid. In olive oil, there are more than 70% of total unsaturated oils.
In lard oil, there are around 60% of unsaturated oils.
In herring oil, there are highest number of saturated fatty acids and lowest polyunsaturated acids.
Thus, we can conclude that out of the given options, olive oils would consume the greatest number of equivalents of hydrogen when subject to catalytic hydrogenation.
The number of hours required : 37.2 hours
<h3>Further explanation</h3>
Given
⁴²K (potassium -42)
Required
The number of hours
Solution
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
Based on Table N(attached), the half-life for ⁴²K is 12.4 hours, which means half of a sample of ⁴²K will decay in 12.4 hours
For three half-life periods :

Answer:
add me!!!
Explanation:
my insta is: becomewhatyouwant2inlife
The required formula of hydrate is MgSO₃.6H₂O.
<h3>How do we calculate the formula of hydrate?</h3>
The number of moles of water per mole of anhydrous solid (x) will be computed by dividing the number of moles of water by the number of moles of anhydrous solid (x) to find the hydrate's formula.
Moles will be calculated as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of MgSO₃ = 0.737g / 104.3g/mol = 0.007mol
Moles of H₂O = 0.763g / 18g/mol = 0.04 mol
Number of H₂O molecule = 0.04/0.007 = 5.7 = 6
So formula of hydrate is MgSO₃.6H₂O.
Hence required formula of hydrate compound is MgSO₃.6H₂O.
To know more about hydrate compound, visit the below link:
brainly.com/question/22411417
#SPJ1
Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?