Explanation:
1)

Mass of NaOH = m
MOlar mass of NaOH = 40 g/mol
Volume of NaOH solution = 1.00 L
Molarity of the solution= 1.00 M


A student can prepare the solution by dissolving the 40. grams of NaOH in is small volume of water and making that whole volume of solution to volume of 1 L.
Upto two significant figures mass should be determined.
2)
(dilution equation)
Molarity of the NaOH solution = 
Volume of the solution = 
Molarity of the NaOH solution after dilution = 
Volume of NaOH solution after dilution= 


A student can prepare NaOH solution of 1.00 M by diluting the 0.500 L of 2.00 M solution of NaOH with water to 1.00 L volume.
Upto three significant figures volume should be determined.
Answer:
2 m/s
Explanation:
Applying the formulae of velocity,
V = d/t............. Equation 1
Where V = Velocity of the body, d = distance, t = time
From the question,
Given: d = 600 m, t = 5 minutes = (5×60) = 300 seconds.
Substitute these values into equation 1
V = 600/300
V = 2 m/s.
Hence the velocity of the body when it travels is 2 m/s
Answer: sodium amide undergoes an acid -base reaction
Explanation:
sodium amide is a ionic compound and basically exists as sodium cation and amide anion. Amide anion is highly basic in nature and hence as soon as there is amide anion generated in the solution , Due to its very pronounced acidity it very quickly abstracts the slightly acidic proton available on methanol.
This leads to formation of ammonia and sodium methoxide.
Hence sodium amide reacts with methanol and abstracts its only acidic proton and form ammonia and sodium Methoxide.
Hence the 3rd statement is a corrects statement.
So we cannot use methanol for sodium amide because sodium amide itself would react with methanol and the inherent molecular natur of sodium amide would then change.
The 1st and 2nd statements both are incorrect because both the compounds methanol as well as sodium amide have dipole moments and hence are polar molecules.
The 4th statement is also incorrect as both the molecules have dipole moment and hence there would be ion-dipole forces operating between them.
The following reaction occurs:
NaNH₂+CH₃OH→NH₃+CH₃ONa