1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
3 years ago
5

Which of the following best describes a binary compound?

Chemistry
1 answer:
slamgirl [31]3 years ago
3 0

Answer:

metal and nonmetal it always include

You might be interested in
Carbon tetrachloride can be produced by the following reaction: Suppose 1.20 mol of and 3.60 mol of were placed in a 1.00-L flas
hjlf

The given question is incomplete. The complete question is :

Carbon tetrachloride can be produced by the following reaction:

CS_2(g)+3Cl_2(g)\rightleftharpoons S_2Cl_2(g)+CCl_4(g)

Suppose 1.20 mol CS_2(g) of and 3.60 mol of Cl_2(g)  were placed in a 1.00-L flask at an unknown temperature. After equilibrium has been achieved, the mixture contains 0.72 mol  of CCl_4. Calculate equilibrium constant at the unknown temperature.

Answer: The equilibrium constant at unknown temperature is 0.36

Explanation:

Moles of  CS_2 = 1.20 mole

Moles of  Cl_2 = 3.60 mole

Volume of solution = 1.00  L

Initial concentration of CS_2 = \frac{moles}{volume}=\frac{1.20mol}{1L}=1.20M

Initial concentration of Cl_2 = \frac{moles}{volume}=\frac{3.60mol}{1L}=3.60M

The given balanced equilibrium reaction is,

                 CS_2(g)+3Cl_2(g)\rightleftharpoons S_2Cl_2(g)+CCl_4(g)

Initial conc.         1.20 M        3.60 M                  0                  0

At eqm. conc.     (1.20-x) M   (3.60-3x) M   (x) M        (x) M

The expression for equilibrium constant for this reaction will be,

K_c=\frac{[S_2Cl_2]\times [CCl_4]}{[Cl_2]^3[CS_2]}

Now put all the given values in this expression, we get :

K_c=\frac{(x)\times (x)}{(3.60-3x)^3\times (1.20-x)}

Given :Equilibrium concentration of CCl_4 , x = \frac{moles}{volume}=\frac{0.72mol}{1L}=0.72M

K_c=\frac{(0.72)\times (0.72)}{(3.60-3\times 0.72)^3\times (1.20-0.72)}

K_c=0.36

Thus equilibrium constant at unknown temperature is 0.36

4 0
3 years ago
Nitric acid (HNO3) is a strong acid that is completely ionized in aqueous solutions of concentrations ranging from 1% to 10% (1.
Alborosie

<u>Given:</u>

Concentration of HNO3 = 7.50 M

% dissociation of HNO3 = 33%

<u>To determine:</u>

The Ka of HNO3

<u>Explanation:</u>

Based on the given data

[H+] = [NO3-] = 33%[HNO3] = 0.33*7.50 = 2.48 M

The dissociation equilibrium is-

            HNO3   ↔    H+      +      NO3-

I            7.50               0                 0

C          -2.48          +2.48              +2.48

E            5.02            2.48              2.48

Ka = [H+][NO3-]/HNO3 = (2.48)²/5.02 = 1.23

Ans: Ka for HNO3 = 1.23

6 0
3 years ago
2.A calibration curve requires the preparation of a set of known concentrations of CV, which are usually prepared by dieting a s
Aleks04 [339]

Answer:

In order to prepare 10 mL, 5 μM; <em> 2 mL of the 25 μM stock solution will be taken and diluted with water up to 10 mL mark.</em>

In order to prepare 10 mL, 10 μM; <em>4 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

In order to prepare 10 mL, 15 μM; <em>6 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

In order to prepare 10 mL, 20 μM; <em>8 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

Explanation:

Using the dilution equation:

no of moles before dilution = no of moles after dilution.

Molarity x volume (initial)= Molarity x volume (final).

In order to prepare 10 mL, 5 μM from 25 μM solution,

Final molarity = 5 μM, final volume = 10 mL, initial molarity = 25 μM, initial volume = ?

25 x initial volume = 5 x 10

Initial volume = 50/25

                       = 2 mL

<em>2 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

<em />

In order to prepare 10 mL, 10 μM from 25 μM stock,

25 x initial volume = 10 x 10

Initial volume = 100/25 = 4 mL

<em>4 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

In order to prepare 10 mL, 15 μM from 25 μM stock,

25 x initial volume = 15 x 10

initial volume = 150/25 = 6 mL

<em>6 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

In order to prepare 10 mL, 20 μM from 25 μM stock,

25 x initial volume = 20 x 10

initial volume = 200/25 = 8 mL

<em>8 mL of the 25 μM stock solution will be taken and diluted up to 10 mL mark.</em>

6 0
3 years ago
What is the right answer for this. I really need help
statuscvo [17]
<span>así que te está diciendo que</span>
6 0
4 years ago
At Which points in this graph is bone growing at the faster rate?
Vikki [24]
The rate of growth is faster in the (10 - 14) age group and slows down after the age of 14. After the age of 16 the growth is the slowest
6 0
3 years ago
Read 2 more answers
Other questions:
  • Which electron configuration represents a selenium atom in an excited state?(1) 2-7-18-6(2) 2-7-18-7(3) 2-8-18-6(4) 2-8-18-7
    6·1 answer
  • What is the relationship between volume and pressure for a gas?
    12·1 answer
  • Number 41? Need help how do you get answrb
    10·1 answer
  • How many meters are there for 1km
    13·2 answers
  • How many moles of Mg are contained in 11.0<br> grams of magnesium?
    15·1 answer
  • An atom of which of these elements most likely forms an anion? A. AI B. Br C. Ca D. Mg
    8·2 answers
  • If a system has 2.00 × 10 2 kcal 2.00×102 kcal of work done to it, and releases 5.00 × 10 2 kJ 5.00×102 kJ of heat into its surr
    13·1 answer
  • What is a measureing tape used for​
    10·2 answers
  • Hola!
    13·1 answer
  • Amines are ________. brønsted-lowry bases brønsted-lowry acids neutral in water solution unreactive
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!