Answer:
= 374.90 kPa
Calculation:
As we know atm and kiloPascal are related to each other as,
1 atm = 101.325 kPa
So,
3.70 atm = X
Solving for X,
X = (3.70 atm × 101.325 kPa) ÷ 1 atm
X = 374.90 kPa
Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>
Noble gases react very unwillingly, because the outermost shell of electrons orbiting the nucleus is full, giving these gases no incentive to swap electrons with other elements. As a result, there are very few compounds made with noble gases. Like its noble gas comrades, neon is odorless and colorless.
Answer: its the first one buster