If there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
<h3>What if there was an inverse relationship between the temperature and the volume?</h3>
If there was an inverse relationship between the temperature and the volume then with increasing temperature decrease occur in the volume of a substance. If this type of relationship is present in the world, the objects will contract when the temperature is high and expand when the temperature is low which make the solid materials expand at winter and contract at summer season.
So we can conclude that if there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
Learn more about temperature here: brainly.com/question/25677592
#SPJ1
Answer:In a physical change, atoms are not rearranged and the matter's physical and chemical properties are unchanged. Chemical changes, on the other hand, rearrange the atoms of matter in new combinations, resulting in matter with new physical and chemical properties.
Explanation:
easy
Answer:
The given statement is true.
Enzymes which are present in the digestive tract such as salivary amylase, pepsin, trypsin, et cetera mainly catalyze the hydrolysis reaction.
The hydrolysis reaction is the reaction by which large molecules are broken down into smaller molecules with the help of water.
Most of the complex molecules or nutrients such as starch, protein et cetera are broken down into their respective smaller units with the help of hydrolysis reaction.
For example, lactase catalyzes the hydrolysis of lactose into glucose and galactose.
Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.
The correct answer to this question would be heat energy