We find the weight of the empirical formula:
12.0107 + 2 x 1.00794 + 15.9994
= 30.03
Now, we divide the molecular weight by the weight of the empirical formula to find the number of times the empirical formula repeats:
90.09 / 30.03
= 3
The formula is 3(CH₂O)
C₃H₆O₃
Answer:
Explanation:
If we look at the structure of 1-Bromopropane; we will see that it is a derivative of alkane family by the the substitution of an alkyl group. The position of the Bromine in the propane is 1, making 1-Bromopropane a primary alkyl-halide.
Primary alkyl - halide undergo SN2 mechanism. This nucleophilic reaction needs to be a strong alkyl halide , such as 1-Bromopropane used otherwise it will result to a reactive mechanism if a weak electrophile is used.
However, the critical and the main objective here is to Draw the major substitution product if the reaction proceeds in good yield. If no reaction is expected or yields will be poor, draw the starting material in the box. If a charged product is formed, be sure to draw the counterion.
The attached diagrams portraying this notions is shown in the attached file below.
Answer:
Oxygen Gas
Explanation:
The balanced equation shows us the reactant ratio of the reaction.
This means that for every one mole of CH3CH2OH, we need 3 moles of O2 to react with it. Because we need more O2, (3x as much) than ethanol and we have the same given amount (1 mole of each), the oxygen will be the limiting reagent. (1 mole of oxygen would only require 1/3 moles of ethanol to react).
Hope this helped!