73.606 °C is the freezing point of the solution made with with 1.31 mol of CHCl3 in 530.0 g of CCl4.
Explanation:
Data given:
number of moles of CHCl3 = 1.31 moles
mass of solvent CHCl3 = 530 grams or 0.53 kg
Kf = 29.8 degrees C/m
freezing point of pure solvent or CCl4 = -22.9 degrees
freezing point = ?
The formula used to calculate the freezing point of the mixture is
ΔT = iKf.m
m= molality
molality = 
putting the value in the equation:
molality= 
= 2.47 M
Putting the values in freezing point equation
ΔT = 1.31 x 29.8 x 2.47
ΔT = 73.606 degrees
Hey I’m not sure but I hope you have a good day today
Answer:
Sufficient concentration and correct orientation of particles
Explanation:
The collision theory postulates that, for a chemical reaction to occur, there must be collision between reacting particles.
It implies that the rate of reaction depends on the number of collisions per unit time as well as the fraction that are successful or effective.
For collisions to be effective, there must be proper orientation of the particles and right concentration of the reactants.
- The number of effective collisions and rate of reaction are directly proportional to the concentration of of the reactants.
The unit for speed is usually m/s
The formula unit of compound made up from Pb4+ and oxygen is PbO2.