Because the Earth's orbit around the sun is not in the same plane as the Moon's orbit around the Earth.
The bubbles that were observed after the mixing of the two substances is one of the products of the reaction. It is the carbon dioxide that is produced. To determine the mass of this gas produced, we need to remember the Law of conservation of mass where mass cannot be created or destroyed. With this, we can say that the total mass that goes in a process should be equal to the mass that is goes out of the process no matter what the reaction is. We do as follows:
Mass of reactants = mass of products
11.00 + 44.55 = 51.04 + mass of carbon dioxide
mass of carbon dioxide = 4.51 g
Answer:
you can solve the rest of the equation. I only reduced it to that much to show you how to derive it
Answer:
None of these are correct, because there is no way to balance this equation, but I hope these steps help you figure out your answer.
Explanation:
Count out the single amounts of elements you have on both sides of the equation. To be balanced, you need to have the exact same for each element.
Before balanced Left side.
Cl-2
O-8
H-2
Before balanced right side.
H-1
Cl-1
O-3
That means we need to increase Hydrogen, Chlorine and Oxygen on the right for sure and see how that affects the equation. You can keep adding the Coefficients until the # of elements begin to match on each side.
(I tried to balance this equation, it doesn't work, there is too much on the reactants side for what the product is.)
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L