Iodine electron configuration is:
1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 5S^2 4d^10 5P^5
when Krypton is the noble gas in the row above iodine in the periodic table,
we can change 1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 by the symbol
[Kr] of Krypton.
So we can write the electron configuration of Iodine:
[Kr] 5S^2 4d^10 5P^5
K because parent atoms are always larger than their cations(positively charged atoms)
A) acids because they start with h
Answer:
2.8 L
Explanation:
From the question given above, the following data were obtained:
Number of mole (n) = 0.109 mole
Pressure (P) = 0.98 atm
Temperature (T) = 307 K
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
The volume of the helium gas can be obtained by using the ideal gas equation as follow:
PV = nRT
0.98 × V = 0.109 × 0.0821 × 307
0.98 × V = 2.7473123
Divide both side by 0.98
V = 2.7473123 / 0.98
V = 2.8 L
Thus, the volume of the helium gas is 2.8 L.
Answer:
Acceleration = (change in speed) / (time for the change)
Change in speed= (0 - 26 km/hr) = -26 km/hr
(-26 km/hr) x (1,000 m/km) x (1 hr / 3,600 sec) = -7.222 m/sec
Average acceleration = (-7.222 m/s) / (22 min x 60sec/min) = -0.00547 m/sec²
Average speed during the stopping maneuver =
(1/2) (start speed + end speed) = 13 km/hr = 3.6111 m/sec
Explanation: