Answer:
The central blue square in between the lower pair of magnet has the least force of repulsion.
Explanation:
We can explain this using the dual nature of magnets.
Each magnet must have two poles namely:
-North pole
-South pole
We assume that the magnetic lines of forces enters from south pole and leaves from the north pole.
When brought together, like poles repel each other while opposite poles attract each other.
In the picture, the lower two magnets have opposite poles facing each other, hence the force of repulsion is minimum there and the force of attraction is maximum.
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.
The answer should be D) Cold air because even though its true sound can travel through all types of matter, air which is a gas, can travel but it travels SLOWLY while sound travels quickly in SOLIDS.
Using formula:
I=(1/2)*M*(R^2+r^2)
<span>I=0.5*0.715kg*[(12.7cm)^2+(10.7cm)^2] </span>
<span>I=98.6 kg*cm^2</span>
Answer:
V= 33.98 m/s
Explanation:
Given that
Horizontal speed ,u= 17 m/s
Time taken by rockets to strike the water ,t= 3 s
We know that acceleration due to gravity ,g= 9.81 m/s²
There is no any acceleration in the horizontal direction that is why the horizontal veloity will remain constant.
In the vertical direction
vy = uy+ g t
Initial velocity in vertical direction is 0 m/s.
vy= 0+ 9.81 x 3
vy = 29.43 m/s
The resultant velocity


V= 33.98 m/s