Coulombs law says that the force between any two charges depends on the amount of charges and distance between them. This force is directly proportional to the magnitude of the two charges and inversely proportional to the distance between them.

where
are charges,
is the distance between them and k is the coulomb constant.
case 1:

case 2

case 3:

Comparing the 3 cases:
The maximum potential force according to coulombs law is between -1 charge and +3 charge separated by a distance of 100 pm.
The sentence can be completed as follows:
"<span>A major difference between radio waves, visible light, and gamma rays is the
energy of the photons, which results in the different photon frequencies and wavelengths."
In fact, gamma rays have greater energy than visible light and visible light has greater energy than radio waves. The energy E of a photon is related to its frequency, f, by
</span>

<span>where h is the Planck constant. We see from this formula that the higher the frequency, the greater the energy. Instead, the wavelength is inversely proportional to the frequency:
</span>

<span>where c is the speed of light. Since the frequency is directly proportional to the energy, this means that the wavelength is inversely proportional to the energy.</span>
Answer:
Here are a few:
1) The orbital radius of these planets is ridiculously small an in no way representative of their actual radii.
2) The planets will only line up like that once every 5200 years, making this very unrepresentative of their usual relations - although this does make their order in distance from the sun.
3) The nebulae, comet, lens flare, and other junk in the background is incorrect.
4) If this is meant as a representation of the planets, then Pluto should not be there as it is now considered a planetoid.
5) The planets are incorrectly scaled both to each other and to the sun.
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector
is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity,
must be in the north direction.
Let
is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector
and head of the vector
must lie on the north-south line.
Now, for this condition, from the triangle OAB




Hence, the kayaker must paddle in the direction of
in the north of east direction.
(1) The image of an object placed further from the lens than the focal point will be upside down and smaller than the object.
(2) When light rays reflect, they bounce back.
(3) Images formed by a concave lens will look magnified.
(4) When light rays enter a different medium, they bend.
<h3>
1.0 Object placed further from the lens than the focal point</h3>
The image of an object placed further from the lens than the focal point will be diminished and inverted.
Thus, the correct answer will be "upside down and smaller than the object".
<h3>2.0 What is reflection of light?</h3>
The ability of light to bounce back when it strike a hard surface is known as refection.
<h3>3.0 Image formed by concave lens</h3>
A concave lens is diverging lens is usually virtual, erect and magnified.
<h3>4.0 Refraction of light</h3>
The change in speed of light when it travels from medium to another medium is known as refraction. Refraction is also, the ability of light to bend around obstacles.
Learn more about reflection and refraction of light here: brainly.com/question/1191238