Answer:
a)
reaction time = 0.70 s
distance travelled in reaction time = v*t
= 20 m/s * 0.70 s
= 14 m
So, when brake is applied, distance remaining= 110 m - 14 m = 96 m
Answer: 96 m
b)
vf = 0 m/s
d = 96 m
vi = 20 m/s
use:
vf^2 = vi^2 + 2*a*d
0 = 20^2 + 2*a*96
-400 = 2*a*96
a = -2.08 m/s^2
Answer: -2.08 m/s^2
c)
use:
vf = vi + a*t
0 = 20 - 2.08*t
t = 9.6 s
Answer: 9.6 s
Explanation:
Answer:
But Mass of solids does not depend upon the temperature because it is matter contained in the solids.
Explanation:
Answer:
A..............hope it will help you
We will apply the concepts related to Newton's second law. At the same time we will convert everything to the system of international units.

The values of the velocities are,


We know that the acceleration is equivalent to the change of the speed in a certain time therefore



Now applying the Newton's second law we have,



Therefore the approximate magnitude is 8516.36N
<h3><u>Answer;</u></h3>
= 480 Joules
<h3><u>Explanation;</u></h3>
We use the formula, Q - W = ΔU
Where, Q = Heat transferred to the system
W = Work done by the system
ΔU = Change of internal energy.
As per the question, Q = 658 J
ΔU = 178 J
Thus, W = Q - ΔU = (658 - 178) J = 480 J.
The energy used to do work by the system is 480 J.