Answer:
a = F-ff/m
Explanation:
According to Newton's second law of motion which states that "the rate of change in momentum of a body is directly proportional to the applied force F and acts in the direction of the force.
Mathematically;
F = ma
Since two forces acts on the cart i.e the moving force F and the frictional force Ff , we will take the sum of the forces.
∑F = ma where
m is the mass of the cart
a is its acceleration
∑F = F+(-ff )(since frictional force is an opposing force)
F - ff = ma
Dividing both sides by mass m
a = F-ff/m
Answer:
n = 5 approx
Explanation:
If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back
= e ( coefficient of restitution ) = 
and

h₁ is height up-to which the ball bounces back after first bounce.
From the two equations we can write that


So on

= .00396
Taking log on both sides
- n / 2 = log .00396
n / 2 = 2.4
n = 5 approx
Answer:
Atom, smallest unit into which matter can be divided without the release of electrically charged particles.
an element is a pure substance which cannot be broken down by chemical means
Data:
F (force) = ? (Newton)
k (<span>Constant spring force) = 50 N/m
x (</span>Spring deformation) = 15 cm → 0.15 m
Formula:

Solving:



Data:
E (energy) = ? (joule)
k (Constant spring force) = 50 N/m
x (Spring deformation) = 15 cm → 0.15 m
Formula:

Solving:(Energy associated with this stretching)



