The volume in units of 6.03x10^3 in3
1ft = 12 inch
So to convert foot into inches we have to multiply by 12
The volume of container = 3.49ft^3
=3.49×12×12×12
= 6030.72 in^3
<h3>
What is the volume of a container?</h3>
The amount of space a container encloses, or how much room is inside of it, is measured by its volume. The volume of a box can be calculated using this straightforward formula: volume V = L × W × H for a box with height H, width W, and length L.
Many different units can be used, however because of the way this formula is written, the volume would have length to the third power dimensions. For instance, if the container's measurements are given in metres, the capacity of the box will be given in metres squared, or m3.
To learn more about volume of a container, visit:
brainly.com/question/9092584
#SPJ4
The acceleration due to gravity near the surface of the planet is 27.38 m/s².
<h3>
Acceleration due to gravity near the surface of the planet</h3>
g = GM/R²
where;
- G is universal gravitation constant
- M is mass of the planet
- R is radius of the planet
- g is acceleration due to gravity = ?
g = (6.626 x 10⁻¹¹ x 2.81 x 5.97 x 10²⁴) / (6371 x 10³)²
g = 27.38 m/s²
Thus, the acceleration due to gravity near the surface of the planet is 27.38 m/s².
Learn more about acceleration due to gravity here: brainly.com/question/88039
#SPJ1
Explanation:
The emf is equal to the work done on the charge per unit charge (ϵ=dWdq) when there is no current flowing. Since the unit for work is the joule and the unit for charge is the coulomb, the unit for emf is the volt (1V=1J/C).
Answer:
The correct answer to the question is (A)
When it hits the heavy rope, compared to the wave on the string, the wave that propagates along the rope has the same (A) frequency
Explanation:
The speed of a wave in a string is dependent on the square root of the tension ad inversely proportional to the square root of the linear density of the string. Generally, the speed of a wave through a spring is dependent on the elastic and inertia properties of the string

Therefore if the linear density of the heavy rope is four times that of light rope the velocity is halved and since
v = f×λ therefore v/2 = f×λ/2
Therefore the wavelength is halved, however the frequency remains the same as continuity requires the frequency of the incident pulse vibration to be transmitted to the denser medium for the wave to continue as the wave is due to vibrating particles from a source for example
ANSWER:
F(h)= 230 N is the horizontal force you will need to move the pickup along the same road at the same speed.
STEP-BY-STEP EXPLANATION:
F(h) is Horizontal Force = 200 N
V is Speed = 2.4 m/s
The total weight increase by 42%
coefficient of rolling friction decrease by 19%
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.
F(h) = F(f)
F(h) = mg* u
m is mass
g is gravitational acceleration = 9.8 m/s^2
200 = mg*u
Since weight increases by 42% and friction coefficient decreases by 19%
New weight = 1+0.42 = 1.42 = (1.42*m*g)
New friction coefficient = μ = 1 - 0.19 = 0.81 = 0.81 u
F(h) = (0.81μ) (1.42 m g)
= (0.81) (1.42) (μ m g)
= (0.81) (1.42) (200)
= 230 N