Explanation:
Position-time graphs measure/express the position of a skater over time relative to the start or finish of the race (depends on how it is used). Note: are the skaters in line vertically or horizontally? Like is one directly behind the other or are they next to each other?
If the two skaters are in line horizontally with each other, then their position will be the same relative to the start or finish of the race. This means if one passes the other one, the position would be different for all times after they pass. On the graph, it would look like one single line at the start (as position is same) which splits into 2 (representing the new difference in position due to 1 passing the other.
If the two skaters are in line vertically, their lines on the graph will appear parallel to each other (assuming they are going same speed) because the position is changing at the same rate, one is just reaching the same point after the other. If the skater behind overtakes the one in front. The lines on the graph will cross and continue either in parallel but with the other line on top to represent the moment where their position is the same right before they pass and after, where the second skater is now in front.
Hope this helped!
Answer:
Explanation:The simple pendulum calculator finds the period and frequency of a ... Acceleration of gravity (g) ... Pendulum length (L) ... First of all, a simple pendulum is defined to be a point mass or bob (taking ... For example, it can be equal to 2 m. ... Find the frequency as the reciprocal of the period: f = 1/T = 0.352 Hz
Answer:
Unsaturated Solution: Less amount of salt in water, clear solution, no precipitation. Saturated Solution: The maximum amount of salt is dissolved in water, Colour of the solution slightly changes, but no precipitation. Supersaturated Solution: More salt is dissolved in water, Cloudy solution, precipitation is visible.
Answer:
i think its false i hope u get it correct
Answer:The total variation in the amount of light entering our eye is not dectiable therefore planets do not twinkle.
Explanation:Stars twinkle, while planets (usually) shine steadily. Why? Stars twinkle because … they're so far away from Earth that, even through large telescopes, they appear only as pinpoints. ... Planets shine more steadily because … they're closer to Earth and so appear not as pinpoints, but as tiny disks in our sky.As light from a star races through our atmosphere, it bounces and bumps through the different layers, bending the light before you see it. Since the hot and cold layers of air keep moving, the bending of the light changes too, which causes the star's appearance to wobble or twinkle.