Answer:
As the temperature of a solid, liquid or gas increases, the particles move more rapidly.
I’m just answering this so i can ask more questions and it has to be 20 words long so i hope you figure your problems out and merry christmas happy new year
Answer:
ΔH°rxn = -47 kJ
Explanation:
Using Hess´s law for the reaction:
3 Fe2O3(s) + CO(g) → 2 Fe3O4(s) + CO2(g) ,
the ΔH°rxn will be given by the expression:
ΔH°rxn kJ = 2ΔHºf(Fe3O4) + ΔHºf(CO2) - ( 3ΔHºf(Fe2O3) + ΔHºf(CO) )
= 2(-1118) + (-394) - ( 3( -824 ) + ( -111 ) )
= - 47 kJ
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.