No, there is a rule called HONC... they could also bond with o2, n, and c
B. A los to cover a coffee mug
Answer:
<u>The deviations are :</u>
- <u>The activation energy which changes with temperature</u>
- <u>The arrhenius constant which depends on the temperature</u>
Explanation:
- There are deviations from the Arrhenius law during the glass transition in all classes of glass-forming matter.
- The Arrhenius law predicts that the motion of the structural units (atoms, molecules, ions, etc.) should slow down at a slower rate through the glass transition than is experimentally observed.
- In other words, the structural units slow down at a faster rate than is predicted by the Arrhenius law.
- <em>This observation is made reasonable assuming that the units must overcome an energy barrier by means of a thermal activation energy. </em>
- The thermal energy must be high enough to allow for translational motion of the units <em>which leads to viscous flow of the material.</em>
- Both the Arrhenius activation energy and the rate constant k are experimentally determined, and represent macroscopic reaction-specific parameters <em>that are not simply related to threshold energies and the success of individual collisions at the molecular level. </em>
- Consider a particular collision (an elementary reaction) between molecules A and B. The collision angle, the relative translational energy, the internal (particularly vibrational) energy will all determine the chance that the collision will produce a product molecule AB.
- Macroscopic measurements of E(activation energy) and k(rate constant ) <em>are the result of many individual collisions with differing collision parameters. </em><em>They are averaged out to a macroscopic quantity.</em>
is the product of the mass and velocity of an object, quantified in kilogram-meters per second.
Answer:
Why does Elisa feel tired all the time? Students figure out: Elisa feels tired because her cells aren't getting the molecules they need from food and air, which are necessary for her cells to function, grow, and repair.