he total number of each of the atoms on the left and the right are the same thus the reaction equation is balanced.
<h3>What is the law of conservation of mass?</h3>
The law of conservation of mass states that, mass can neither be created nor destroyed. In view of the law of conservation of mass, the total mass of the reactants on the left-hand side must be the same as the total mass of products at the right hand side.
Thus is the total mass of the reactants and the products are not the same, it then follows that the reaction does not demonstrate the law of conservation of mass. In this case, the total number of each of the atoms on the left and the right are the same thus the reaction equation is balanced.
Learn more about conservation of mass:brainly.com/question/13383562
#SPJ1
Answer:
Ne
Explanation:
Atomic number of Ne is 10.
Electronic configuration of Ne:

Octet of Ne is complete . Element having complete octet are stable and behave ideal gas.
and
are reactive and hence, does not behave as ideal gas.
D is the answer. The thermo works as an insulator minimizing the heat loss to the environment.
<span>H2O2
First, let's determine how many moles of hydrogen and oxygen atoms we have. Start by looking up the atomic weights of those elements:
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Moles hydrogen = 1.33 g / 1.00794 g/mol = 1.319522987 mol
Moles oxygen = 21.3 g / 15.999 g/mol = 1.331333208 mol
We now have a ratio of 1.319522987 : 1.331333208 and we want a ratio of small integers that is close. Start by dividing all the numbers in the ratio by the smallest value, giving:
1 : 1.008950371
This ratio is acceptably close to 1:1 so I assume the formula is of the form HnOn where n is a small integer. Let's initially assume that n is 1, so the mass would be
1.00794 + 15.999 = 17.00694
Obviously 17 is far smaller than 34.1. So let's divide 34.1 by 17.00694 and see what n should be:
34.1 / 17.00694 = 2.005063815
So the formula we want is H2O2, which is hydrogen peroxide.</span>