Answer:
The Machine exerts a force of 9N.
Explanation:
Initial velocity (u) = 0 m/s
Final velocity (v) = 30 m/s
Time (t) = 0.5 s
Acceleration (a) = (v-u)/t
= (30-0)/0.5 m/s²
= 30/0.5 m/s²
= 60 m/s²
Mass = 0.15 kg
Force = Mass*Acceleration
= 0.15*60 N
= 9 N
Answer:
hydroxide ion
Explanation:
The alkaline battery got this name because it has an alkaline electrolyte of potassium hydroxide.
Answer: 0.0345 sec
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
![Rate=k[H_3PO_4]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BH_3PO_4%5D%5E2)
k= rate constant = 
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
for completion of 20 % of reaction



The time taken for the concentration of
to decrease to 20% to its natural value is 0.0345 sec
Answer:
Explanation:
Since we are not given the mole fraction of ethanol and water; we will solve this theoretically.
Using Raoult's Law:
For water:

where
of water = 12.5 mmHg
Then, the vapor pressure of water:

For ethanol:

and the
of ethanol = 32.1 mmHg
Then, the vapor pressure of ethanol:

The total vapor pressure 
The total vapor pressure = 
Answer:

Explanation:
First thing is we have assume all the percents are grams so we have
68.279g C, 6.2760g H, 3.7898g N, and 21.656g O
Now convert each gram to moles by dividing the the molar mass of each element
68.279g/12.01g= 5.685 moles of C
6.2760g/1.01g= 6.214 moles of H
3.7898g N/14.01g= 0.271 moles of N
21.656g O/ 16.00g= 1.354 moles of O
Now to find the lowest ratios divide all the moles by the smallest number of moles you found, in our case, the smallest moles is 0.271 moles of N so divide everything by that....
5.685 moles/0.271 moles ------> ~21 C
6.214 moles/0.271 moles --------> ~23 H
0.271 moles / 0.271 moles ---------> 1 N
1.354 moles/ 0.271 moles ----------> ~5 O
So the empirical formula is C21H23NO5 