1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanzania [10]
3 years ago
10

I need help with this physics question

Physics
1 answer:
elixir [45]3 years ago
8 0

Answer:

ggg

Explanation:

You might be interested in
2. Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of 12 x 10-9 C and the oth
Maru [420]

Answer:

A. -2.16 * 10^(-5) N

B. 9 * 10^(-7) N

Explanation:

Parameters given:

Distance between their centres, r = 0.3 m

Charge in first sphere, Q1 = 12 * 10^(-9) C

Charge in second sphere, Q2 = -18 * 10^(-9) C

A. Electrostatic force exerted on one sphere by the other is:

F = (k * Q1 * Q2) / r²

F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²

F = -2.16 * 10^(-5) N

B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:

Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))

= - 6 * 10^(-9) C

Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C

Hence the electrostatic force between them is:

F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²

F = 9 * 10^(-7) N

7 0
3 years ago
Who can do my worksheet for me
timurjin [86]

Answer:

what  is it on? like name one of the questions

Explanation:

5 0
3 years ago
What is the momentum of a 50-kilogram ice skater gliding across the ice at a speed of 5 m/s? (1 point)
serious [3.7K]
Momentum is a term used to quantify the motion of an object has. It is calculated as the the product of the object's mass and the velocity. It is expressed as:

Momentum = m x v
Momentum = 50 kg x 5 m/s
Momentum = 250 kg m/s

Therefore, the correct answer is the last option.
3 0
3 years ago
Read 2 more answers
A circular loop of wire with a radius of 15.0cm and oriented in the horizontal xy-plane is located in a region of uniform magnet
Drupady [299]

Answer:

See answer

Explanation:

The area of the circular loop is given by:

A = \pi r^2

The magnetic flux is given by:

\phi = \int \vec{B} \cdot d\vec{A}

d\vec{A} is parallel to \vec{B} and \vec{B} is constant in magnitude and direction therefore:

\phi = \int \vec{B} \cdot d\vec{A}= \int BdAcos(0)= B\int dA= B*(\pi r^2)= \pi Br^2

Part A)

initially the flux is \phi =\pi B r^2

after the interval \Delta t= 2.4 [m/s]

the flux is

\phi = 0

now, the EMF is defined as:

\epsilon =- \frac{d \phi}{dt},

if we consider \Delta t= 2.4 [m/s] very small then we can re-write it as:

\epsilon =- \frac{\Delta \phi}{\Delta t}

\Delta \phi = 0 - \pi B r^2=-\pi (1.7) (0.15)^2=-0.12

then:

\epsilon =- \frac{-0.12}{0.0024} = 50 [V]

Part B)

When looked down from above, the current flows counter clockwise, according to the right hand rule, if you place your thumb upwards (the direction of the magnetic field) and close your fingers, then the current will flow in the direction of your fingers.

3 0
3 years ago
In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, s
nevsk [136]

a) 0.94 m

The work done by the snow to decelerate the paratrooper is equal to the change in kinetic energy of the man:

W=\Delta K\\-F d = \frac{1}{2}mv^2 - \frac{1}{2}mu^2

where:

F=1.1 \cdot 10^5 N is the force applied by the snow

d is the displacement of the man in the snow, so it is the depth of the snow that stopped him

m = 68 kg is the man's mass

v = 0 is the final speed of the man

u = 55 m/s is the initial speed of the man (when it touches the ground)

and where the negative sign in the work is due to the fact that the force exerted by the snow on the man (upward) is opposite to the displacement of the man (downward)

Solving the equation for d, we find:

d=\frac{1}{2F}mu^2 = \frac{(68 kg)(55 m/s)^2}{2(1.1\cdot 10^5 N)}=0.94 m

b) -3740 kg m/s

The magnitude of the impulse exerted by the snow on the man is equal to the variation of momentum of the man:

I=\Delta p = m \Delta v

where

m = 68 kg is the mass of the man

\Delta v = 0-55 m/s = -55 m/s is the change in velocity of the man

Substituting,

I=(68 kg)(-55 m/s)=-3740 kg m/s

7 0
3 years ago
Other questions:
  • Choose the mathematical formula expressing work. W=F x d W=d/F W=F/d
    5·2 answers
  • In the formula for water (H20), what does the lack of a subscript after the 0 indicate?
    10·2 answers
  • Match each term with the best description. DispersionRayRefractive indexSnell's lawTotal internal reflection Ratio of the speed
    8·1 answer
  • 1.
    10·1 answer
  • PLEASE HELP ME!<br> help on this cross word puzzle PLEASE!<br> 17 POINTS FOR HELPING THANKS!
    8·2 answers
  • Which of the following would describe a length that is 2.0×10^-3 of a meter? a: 2.0 kilometers
    14·1 answer
  • The diagram shows the process used in gene therapy.
    12·2 answers
  • In order for a satellite to move in a stable circular orbit of radius 6588km at a constant speed, its centripetal acceleration m
    14·1 answer
  • 1.2 Define the following terms and in each case give the symbol and the unit: 1.2.1 wavelength (4) ·​
    9·1 answer
  • Two girls are standing on a rollerskates holding a basketball. One girl throws the ball to the other. Explain what happens to th
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!