At that point it is no longer trying to uncompress nor is it trying to stretch. This is the same thing as a pendulum at the bottom of its swing, no longer falling but not yet rising against gravity. Thus the kinetic energy there is the same as the potential energy when it is compressed. The energy of compression is

This gives E=0.5(37)(0.2)²=
0.74JThis is the same as the kinetic energy when it is at natural length
Speed of the tip of the minute hand=V=0.0244 cm/s
Explanation:
The angular velocity of the minute hand is given by

T= time period of the minute hand=60 min=3600 s
so ω= 2 π/3600 rad/s
Now linear velocity v= r ω
r= radius of minute hand=14 cm
so v= 14 (2 π/3600)
V=0.0244 cm/s
Answer:
The correct option is;
Raymond: I think the skateboarder has the same total energy at all points on the ramp
Explanation:
The total energy, also known as the total mechanical energy, is the sum of the kinetic and potential energies of the skateboarder
Given that the potential energy is the energy gained due to elevation, the maximum potential energy is obtained at the top of the ramp, while the maximum kinetic energy, which is the energy due to motion, is at the bottom of the ramp where the skateboarder moves fastest.
However, by the energy conservation principle, the kinetic energy of he skateboarder comes from the conversion of the potential energy, such that the total energy is the same at any particular point on the ramp.
Acids are danger so stay away
The EM spectrum has no limits. Any frequency you can imagine
is the frequency of some electromagnetic radiation somewhere.