Answer and Explanation:
As per the question:
When the stone is thrown from the cliff top and hits the ground below eventually:
R = 
where
= initial velocity
H = height
g = acceleration due to gravity
R = horizontal Range
Now,
(a) Displacement of the stone is given by the horizontal range:
R = 
where
= initial velocity
H = height
g = acceleration due to gravity
R = horizontal Range
(b) Speed just prior to the impact is given by the third equation of motion:

where
v = final velocity
(c) Time of flight is given by the second eqn of motion where the initial velocity is considered to be 0 then:


T = 
Answer:
- <em>Abbie’s acceleration is (1/2) Zak’s acceleration.</em>
Explanation
1. <u>Data</u>:
a) ω = constant
b) Abbie: r₁ = 1 m
c) Zak: r₂ = 2 m
d) Ac₁ = ? Ac₂
2. <u>Formulae</u>
3. <u>Solution</u>:
a) Abbie:
b) Zack:
c) Divide Ac₁ / Ac₂
- Ac₁ / Ac₂ = ω² (1m) / [ω² (2m) ] = 1/2
⇒ Ac₁ = (1/2) Ac₂ = Ac₂ / 2 = 0.5 Ac₂
Your answer is most likely:
<span>B) They are protective of their owners. </span>
MA = (Effort Distance)/(Effort Resistance) = L/H
L = MA * H = 5 * 8" = 40"