Example 1: An 850-kg car is accelerating at a rate of 2.4m/s2 to the right along a ... 2) A nonzero net force ΣF acting on mass M causes an acceleration a in it such that ΣF = Ma. The acceleration has the same direction as the applied net force. ... (b) Knowing that the crate is being pushed to the left by a 53-N force
I searched for you and i think its Velocity. it would be nice if u put the answer choices though
Explanation:
⠀
⠀
(a) <u>The</u><u> </u><u>segment</u><u> </u>A shows acceleration as velocity increases with the increase in time.
⠀
⠀
⠀
(b) <u>The</u><u> </u><u>segment</u><u> </u>C shows the object is slowing down as the time increases in segment C, the velocity decreases and afterwards it comes to rest.
⠀
⠀
⠀
(c) The velocity is segment B is <u>4</u><u>0</u><u>m</u><u>/</u><u>s</u><u>.</u> And in the diagram there is no change in velocity.
⠀
⠀
⠀
(d) The acceleration of segment B is <u>zero</u><u>.</u> As there in no change in curve and it is moving with uniform velocity.
⠀
⠀
⠀

<h2>Thank you!</h2>
Answer:
(B) The total internal energy of the helium is 4888.6 Joules
(C) The total work done by the helium is 2959.25 Joules
(D) The final volume of the helium is 0.066 cubic meter
Explanation:
(B) ∆U = P(V2 - V1)
From ideal gas equation, PV = nRT
T1 = 21°C = 294K, V1 = 0.033m^3, n = 2moles, V2 = 2× 0.033=0.066m^3
P = nRT ÷ V = (2×8.314×294) ÷ 0.033 = 148140.4 Pascal
∆U = 148140.4(0.066 - 0.033) = 4888.6 Joules
(C) P2 = P1(V1÷V2)^1.4 =148140.4(0.033÷0.066)^1.4= 148140.4×0.379=56134.7 Pascal
Assuming a closed system
(C) Wc = (P1V1 - P2V2) ÷ 0.4 = (148140.4×0.033 - 56134.7×0.066) ÷ 0.4 = (4888.6 - 3704.9) ÷ 0.4 = 1183.7 ÷ 0.4 = 2959.25 Joules
(C) Final volume = 2×initial volume = 2×0.033= 0.066 cubic meter
There is synthesis
decomposition
double displacement
single displacement
combustion
metathesis
so i guess you could say 6