Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
Answer:
Explanation:
Given
Cannon is fired with a velocity of 
Using Equation of motion

where




after time 



So after 3.3 s cannon ball is at a height of 185.89 m
if a volume of air is warmed it expands due to increased translational kinetic energy as it expands it will start to cool.
<h3>When does temperature increase volume?</h3>
We can then conclude that at constant pressure, temperature and volume are directly proportional: temperature increases, volume increases; decrease temperature, decrease volume.
In this case, the higher the temperature, the greater the kinetic energy that acts on the molecules of this gas, so when the gas expands, these molecules find more space and collide less, which will cause the gas to cool.
See more about volume at brainly.com/question/1578538
#SPJ12
There isnt enough information to answer the question, the missing variable is "distance from said falling spot and ground"