Answer:
a)
s
b) 3.41 mm
Explanation:
a)
We take the speed of light, c =
m/s and the refractive index of glass as 1.517.
Speed = distance/time
Time = distance/speed
Refractive index, n = speed of light in vacuum / speed of light in medium






b)
We take the refractive index of water as 1.333.
Speed in water = speed in vacuum / refractive index of water
Distance = speed * time



d = 3.41 mm
Answer:
Explanation:
a )
from lens makers formula

f is focal length , r₁ is radius of curvature of one face and r₂ is radius of curvature of second face
putting the values

1.462 = 2 - 1 / r₂
1 / r₂ = .538
r₂ = 1.86 cm .
= 18.6 mm .
b )
object distance u = 25 cm
focal length of convex lens f = 1.8 cm
image distance v = ?
lens formula



.5555 - .04
= .515
v = 1.94 cm
c )
magnification = v / u
= 1.94 / 25
= .0776
size of image = .0776 x size of object
= .0776 x 10 mm
= .776 mm
It will be a real image and it will be inverted.
I can guarantee you that it is not
C.<span>the angle that the incident ray makes with a line drawn perpendicular to the reflecting surface I hope this somewhat helps</span>
We calculate the coordinates at t₁ = 9 min and t₂ = 10 min, since the 10th minute is between t₁ and t₂.
As it leaves from rest, it means that the initial speed is zero
t₁=9 min=540 s
t₂=10 min=600 s
x₁=at₁²/2=8*540²/2=4*291600=1166400 m
x₂=at₂²/2=8*600²/2=4*360000=1440000 m
Δx=x₂-x₁=1440000-1166400=273600 m represents the distance traveled by the car in the 10th minute of travel