<span>Then, since the peak wavelength of the star Beta is 200nm, use Wein law and round 200 to the nearest WHOLE NUMBER. Hope that helps. </span>
Answer:
inertia of motion
Explanation:
it's because when a passenger is jumping from a bus his/her body is in motion after falling in a road he/she remains or tends to remain in the state of motion that is the reason
Answer:
The maximum height is 2881.2 m.
Explanation:
Given that,
Acceleration = 29.4 m/s²
Time = 7.00 s
We need to calculate the distance
Using equation of motion

Put the value into the formula


We need to calculate the velocity
Using formula of velocity

Put the value into the formula


We need to calculate the height
Using formula of height

Put the value into the formula


We need to calculate the maximum height
Using formula for maximum height

Put the value into the formula


Hence, The maximum height is 2881.2 m.
Not really the volume of a container is simply length X width X depth so just how big the container unless the water is pressurized by some sort of weight or if the containers air pressure is lowered
Answer:
A)
B)
C)
Explanation:
Given that a pendulum is suspended by a shaft with a very light thin rod.
Followed by the given information: m = 100 g, I = 0.5 m, g = 9.8 m / s²
We can determine the answer to these questions using angular kinematics.
Angular kinematics is just derived from linear kinematics but in different symbols, and expressions.
Here are the formulas for angular kinematics:
- θ = ωt
- ∆w =
- L [Angular momentum] = mvr [mass × velocity × radius]
A) What is the minimum speed required for the pendulum to traverse the complete circle?
We can use the formula v = √gL derived from
B) The same question if the pendulum is suspended with a wire?
C) What is the ratio of the two calculated speeds?