lmoooooi9okkkkjghedjydthaksidhqelzyakx
Answer:
<em>20 m/s in the same direction of the bus.</em>
Explanation:
<u>Relative Motion
</u>
Objects movement is always related to some reference. If you are moving at a constant speed, all the objects moving with you seem to be at rest from your reference, but they are moving at the same speed as you by an external observer.
If we are riding on a bus at 10 m/s and throw a ball which we see moving at 10 m/s in our same direction, then an external observer (called Ophelia) will see the ball moving at our speed plus the relative speed with respect to us, that is, at 20 m/s in the same direction of the bus.
<span>True
</span><span>True
</span><span>False*
</span><span>False*
</span><span>True
</span><span>True
</span><span>False
A,B,AB,O
10.)?
11.)</span><span>water
carbon dioxide
12.)</span><span>geocentric
</span>13.)<span>Juptier</span>
Answer:

Explanation:
First, we calculate the work done by this force after the box traveled 14 m, which is given by:
![W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7Bx_f%7D_%7Bx_0%7D%20%7BF%28x%29%7D%20%5C%2C%20dx%20%5C%5CW%3D%5Cint%5Climits%5E%7B14%7D_%7B0%7D%20%28%7B18N-0.530%5Cfrac%7BN%7D%7Bm%7Dx%7D%29%20%5C%2C%20dx%5C%5CW%3D%5B%2818N%29x-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7Bx%5E2%7D%7B2%7D%5D%5E%7B14%7D_%7B0%7D%5C%5CW%3D%2818N%2914m-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B%2814m%29%5E2%7D%7B2%7D-%2818N%290%2B%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B0%5E2%7D%7B2%7D%5C%5CW%3D252N%5Ccdot%20m-52N%5Ccdot%20m%5C%5CW%3D200N%5Ccdot%20m)
Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:

The box is initially at rest, so
. Solving for
:
