Answer:
The answer is 0.83 seconds.
Explanation:
The formula of free fall is following:

Where g=9.8 m/s^2 and t=2 seconds, the rock takes:

19.6 meters. This is the half distance of the cliff. The whole distance is 39.2 meters. So it takes:

2.83 second to fall down completely. The rock takes the second half of the cliff in 0.83 seconds
The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4
Answer:
b) Nothing will happen, the sea saw will still be balanced.
Explanation:
b) Nothing will happen, the sea saw will still be balanced.
Reason:-
When two kids are balanced, the sum of torques on the seesaw will be zero.
if each kid, reduces their distances by half, then the torque of each kid will be half and the sum of torque of each on the seesaw will be zero.
Therefore the seesaw is balanced
Answer:
The earth's pull on the moon
Explanation:
Earth exerts a gravitational pull on the moon 80 times stronger than the moon's pull on the Earth.
Answer: V = 3.4 L
Explanation: Use Boyle's Law to find the new volume. P1V1 = P2V2, derive for V2, then the formula will be V2= P1V1 / P2
V2 = 2.5 atm ( 4.5 L ) / 3.3 atm
= 3.4 L