Here we can say that rate of flow must be constant
so here we will have

now we know that


now from above equation



so velocity will reduce by factor 0.14
Answer:
here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa
Explanation:
As wee know that the amplitude of the wave will decide the energy of the wave
Here we know that energy density of electromagnetic wave is given as

now we have

so here we can say that intensity of the wave at the given distance from the source is given by formula

so here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa.
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
Answer:
Explanation:
weight on moon = 1/6* weight on earth
69.3=1/6*weight on earth
weight on earth = 69.3*6
weight on earth = 415.8 N
first off lemme just say this is really easy man, just look at the directions
Blank #1: -23
Blank #2: 23