On Apollo Moon missions, the lunar module would blast off from the Moon's surface and dock with the command module in lunar orbi
t. After docking, the lunar module would be jettisoned and allowed to crash back onto the lunar surface. Seismometers placed on the Moon's surface by the astronauts would then pick up the resulting seismic waves. Find the impact speed of the lunar module, given that it is jettisoned from an orbit 110 km above the lunar surface moving with a speed of 1600 m/s .
My Approach:
Ei = Ef
1/2*m*vi2 - (G*m*ME)/(radius of moon + orbital distance) = 1/2*m*vf2 - (G*m*ME)/r
=> (0.5 * m * 16002) - (6.67 * 10-11 * 7.35*1022 * m/(1737.4*103 +180*103) = (0.5*m*v^2) - (6.67*10-11 * 7.35*1022 * m/(1737.4*103 )
Using Fleming right hand rule that States that if the fore-finger, middle finger and the thumb of left hand are stretched mutually perpendicular to each other, such that fore-finger points in the direction of magnetic field, the middle finger points in the direction of the motion of positive charge, then the thumb points to the direction of the force
There is a threshold frequency for each metal, and only light of a frequency higher than this threshold causes electrons to be emitted from the metal surface.