1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lostsunrise [7]
2 years ago
14

On Apollo Moon missions, the lunar module would blast off from the Moon's surface and dock with the command module in lunar orbi

t. After docking, the lunar module would be jettisoned and allowed to crash back onto the lunar surface. Seismometers placed on the Moon's surface by the astronauts would then pick up the resulting seismic waves.
Find the impact speed of the lunar module, given that it is jettisoned from an orbit 110 km above the lunar surface moving with a speed of 1600 m/s .
My Approach:
Ei = Ef
1/2*m*vi2 - (G*m*ME)/(radius of moon + orbital distance) = 1/2*m*vf2 ​- (G*m*ME)/r
=> (0.5 * m * 16002) - (6.67 * 10-11 * 7.35*1022 * m/(1737.4*103 +180*103) = (0.5*m*v^2) - (6.67*10-11 * 7.35*1022 * m/(1737.4*103 )
Physics
1 answer:
LiRa [457]2 years ago
5 0

Answer:

Following are the solution to the given question:

Explanation:

For crashing speed, we can use energy conservation:

kinetic energy = \frac{1}{2}\times m \times v^2  

potential energy = -\frac{GMm}{r}

moon mass= 7.36\times 10^{22} \ kg

Radius= 1738\  km  

\to (K + U) \ orbit = (K + U)\ crash\\\\\to \frac{1}{2}\times m \times v_o^2 - \frac{GMm}{(1738000 + 110000)} \\\\ \to \frac{1}{2}\times m \times vc^2 - \frac{GMm}{1738000}

Calculating the mass drop for the leave:

\to \frac{vo^2}{2} - \frac{GM}{1848000}\\\\ \to \frac{vc^2}{2} - \frac{GM}{1738000}

Solve the value for

vc = \sqrt{(vo^2 +2\times GM \times(\frac{1}{1738000} - \frac{1}{1848000}))}\\\\vc = \sqrt{(1600^2 +2\times 6.67\times 10^{-11} \times 7.36 \times 10^{22}\times (\frac{1}{1738000} - \frac{1}{1848000}))}\\\\vc = 1701 \ \frac{m}{s}\\\\  

The approach is correct but misrepresented in replacing 180 km instead of 110 km.

You might be interested in
Which factor listed below most likely results in the loss of genetic variation from small populations?
Snezhnost [94]

The correct choice is genetic drift.

genetic drift is known as the variation in alleles number within a population and it mainly happens in small population where chances of losing an alleles are larger. it is common effect observed when significant number in a population die or when there is significant reduction in birth. hence genetic drift results in loss of genetic variation

8 0
3 years ago
***PLEASE HELP WITH ANSWER AND EXPLANATION: Imagine the current in a current-carrying wire is flowing into the screen. What is t
aalyn [17]

Magnetic field direction is given by right hand thumb rule.

If we put our thumb in the direction of current then curl of fingers will show the magnetic field direction around the wire.

Now here since current is going into the screen so we will put our thumb into the screen and then the curl of fingers is clockwise around it.

The magnetic field is clockwise.

So this would be the direction of magnetic field

5 0
3 years ago
Read 2 more answers
This graph shows the energy of a reaction over time. Which statement is
kirill115 [55]

Answer: D.

Explanation: Just took the quiz.

3 0
2 years ago
Read 2 more answers
Somebody please explain how to solve this. Thanks in advance!
Jobisdone [24]

work done is product of force and displacement of point of application of force

so here we have to check the product of force and displacement both

Now we will put the least to maximum work in the following order

1. -A man exerts strenuous effort in pushing a stationary wall

2. -A flea pushes a speck of dirt 1 cm

3. -A farmer pushes a 2 kg wheelbarrow 20 m

4. -A cannon launches a 3 kg cannonball a distance of 200

5. -A 2000 kg car travels 400 m down a road

6. -Space shuttle Atlantis launches from the ground into near-Earth orbit

5 0
2 years ago
A car travels a distance of 100 km. For the first 30 minutes it is driven at a constant speed of 80 km/hr. The motor begins to v
gregori [183]

Explanation:

First, we need to determine the distance traveled by the car in the first 30 minutes, d_{\frac{1}{2}}.

Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

                                          d_{\frac{1}{2}\text{h}} \ = \ \text{speed} \ \times \ \text{time taken} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ \left(\displaystyle\frac{30}{60} \ \text{h}\right) \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 80 \ \text{km h}^{-1} \ \times \ 0.5 \ \text{h} \\ \\ \\ d_{\frac{1}{2}\text{h}} \ = \ 40 \ \text{km}

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance, d_{\text{remain}} , in which the driver reduces the speed to 40km/hr is

                                             d_{\text{remain}} \ = \ 100 \ \text{km} \ - \ 40 \ \text{km} \\ \\ \\ d_{\text{remain}} \ = \ 60 \ \text{km}.

Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by  t_{\text{remian}}.

                                              t_{\text{remain}} \ = \ \displaystyle\frac{\text{distance}}{\text{speed}} \\ \\ \\ t_{\text{remain}} \ = \ \displaystyle\frac{60 \ \text{km}}{40 \ \text{km hr}^{-1}} \\ \\ \\ t_{\text{remain}} \ = \ 1.5 \ \text{hours}.

Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

                                                     \text{speed} \ = \ \displaystyle\frac{\Delta d}{\Delta t} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{(0.5 \ \text{hr} \ + \ 1.5 \ \text{hr})} \\ \\ \\ \text{speed} \ = \ \displaystyle\frac{100 \ \text{km}}{2 \ \text{hr}} \\ \\ \\ \text{speed} \ = \ 50 \ \text{km hr}^{-1}

Therefore, the average speed of the car is 50 km/hr.

8 0
2 years ago
Other questions:
  • What is the angular speed of a body vibrating<br>at 50 cycles per second:​
    11·1 answer
  • A pendulum is swinging back and forth with a period of 2.0 seconds here on Earth. This pendulum is then brought to the Moon, whe
    8·1 answer
  • An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
    15·1 answer
  • ¿Alguien me puede ayudar? Problema: Un niño le pide gastada a su papá y éste le contesta que le dará los $120 que tiene en su bo
    15·1 answer
  • A 2.44×104-kg rocket blasts off vertically from the earth's surface with a constant acceleration. During the motion considered i
    8·1 answer
  • How would the Earth move if the sun (including its gravity) suddenly disappeared? Explain your answer.
    5·1 answer
  • You and a friend both leave the same restaurant to drive home. You are heading directly west at 30 miles per hour and he or she
    8·2 answers
  • If a person weighs 890 newtons, roughly what is the mass of the person?
    9·1 answer
  • An object A with a kinetic energy of 800 joules moving horizontally is subjected to a force of 100 Newtons, which is the opposit
    12·1 answer
  • Calculate the displacement of the following components:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!