Answer:
Approximately
(assuming that the melting point of ice is
.)
Explanation:
Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

The energy required comes in three parts:
- Energy required to raise the temperature of that
of ice from
to
(the melting point of ice.) - Energy required to turn
of ice into water while temperature stayed constant. - Energy required to raise the temperature of that newly-formed
of water from
to
.
The following equation gives the amount of energy
required to raise the temperature of a sample of mass
and specific heat capacity
by
:
,
where
is the specific heat capacity of the material,
is the mass of the sample, and
is the change in the temperature of this sample.
For the first part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
Similarly, for the third part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
The second part of energy input requires a different equation. The energy
required to melt a sample of mass
and latent heat of fusion
is:
.
Apply this equation to find the size of the second part of energy input:
.
Find the sum of these three parts of energy:
.
Cars are the mechanical device which convert chemical energy of fuel into mechanical energy, the engine used in the automobiles car are very inefficient, they can only convert 30-40% of chemical energy of fuel into mechanical energy, since thermodynamics is the branch of science that deals with the conversion of energy, thus due to poor conversion rate of chemical energy into mechanical energy, cars are known as inefficient machine.
The statement above is FALSE.
The right hand rule is used in physics to predict the direction of the force on a charged object moving in a MAGNETIC FIELD. The right hand rule is used to relate the relationship between the magnetic field and the forces that are exerted on the moving objects in the field. Using the right hand rule, for a positively charged object that is moving in an electric field, the pointer finger will point in the direction the charged object is moving, the middle finger will point in the direction of the magnetic field and the thumb will point in the direction of the magnetic force that is pushing the charged object.