Answer:
To convert inches to centimeters, use an easy formula and multiply the length by the conversion ratio.
Since one inch is equal to 2.54 centimeters, this is the inches to cm formula to conver
Explanation:
Answer:
shirt is little attached to the body, it can come off and fly away
Explanation:
In electrostatics, charges of different signs attract and charges of the same sign repel.
In this case, when a negative charge is placed on it, both the inventor and the shirt are charged, therefore there is a repulsive force, also there is an attraction between the positive charge of the roof attracts the negative charge, such as the shirt. of weak the two forces not greater than the resistance of the walk.
As the shirt is little attached to the body, it can come off and fly away
Answer:
W= -2.5 (p₁*0.0012) joules
Explanation:
Given that p₀= initial pressure, p₁=final pressure, Vi= initial volume=0 and Vf=final volume= 6/5 liters where p₁=p₀ then
In adiabatic compression, work done by mixture during compression is
W=
where f= final volume and i =initial volume, p=pressure
p can be written as p=K/V^γ where K=p₀Vi^γ =p₁Vf^γ
W= 
W= K/1-γ ( 1/Vf^γ-1 - 1/Vi^γ-1)
W=1/1-γ (p₁Vf-p₀Vi)
W= 1/1-1.40 (p₁*6/5 -p₀*0)
W= -2.5 (p₁*6/5*0.001) changing liters to m³
W= -2.5 (p₁*0.0012) joules
Answer:
.D)The Vector sum of the linear momenta of the fragments must be zero.
Explanation:
.D)The Vector sum of the linear momenta of the fragments must be zero.
This statement is true. This is so because no external force is acting on the masses. The motion is created by internal force so momentum of fragments will be conserved.
A) this statement is false because kinetic energy was zero in the beginning ( the bomb was stationary in the beginning )
B ) This statement is false because it violates the law of conservation of momentum .( it does not violates only when all the fragments have equal mass )
C ) This statement is zero because kinetic energy is not a vector quantity so two kinetic energy when added can not sum up to zero.
<h2><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>:-</h2>
The speed of a wave is 40 m/s. If the wavelength is 80 centimeters, what is the frequency of the wave ?
<h2><u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>:-</h2>
<h3>Given:-</h3>
Velocity (V) = 40 m/s
Wavelength
= 80 cm = 0.8 m
<h3>To Find:-</h3>
The frequency (F) of the wave.
<h2>Solution:-</h2>
We know,

40 = F × 0.8
F = 
F = 50
<h3>The frequency of the wave is <u>5</u><u>0</u><u> </u><u>H</u><u>z</u>. [Answer]</h3>