The answer is attract. Hope it helps! :)
The volume of the balloon will halve
Explanation:
Boyle's law states that for an ideal gas kept at constant temperature, the pressure of the gas is proportional to its volume. Mathematically,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

And if we apply it to the gas inside the balloon in this problem (assuming its temperature is constant), we have:
is the initial pressure at sea level (the atmospheric pressure)
is the initial volume
is the final pressure
is the final volume
Substituting into the equation, we find:

Which means that the volume of the balloon will halve.
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
PART A)
Conductivity of insulator is very small as there is no free electrons to conduct the current trough that medium
So here number of conduction electrons are very less in insulators
PART B)
Resistance is the property of a conducting medium which will oppose the flow of current trough it
Resistance of wire directly depends on its length so resistance of long wire will be more than the resistance of short wire
Resistance inversely depends on the area so if a wire has more crossectional area then its resistance must be small
PART C)
power of light bulb is defined as rate of electrical energy
it is given by formula
P = i V
here we know that
i = 1.46 A
V = 120 volts
so power is given as


The derived unit for voltage is named volt.
Answer:
Explanation:
Given a parallel plate capacitor of
Area=A
Distance apart =d
Potential difference, =V
If the distance is reduce to d/2
What is p.d
We know that
Q=CV
Then,
V=Q/C
Then this shows that the voltage is inversely proportional to the capacitance
Therefore,
V∝1/C
So, VC=K
Now, the capacitance of a parallel plate capacitor is given as
C= εA/d
When the distance apart is d
Then,
C1=εA/d
When the distance is half d/2
C2= εA/(d/2)
C2= 2εA/d
Then, applying
VC=K
V1 is voltage of the full capacitor V1=V
V2 is the required voltage let say V'
Then,
V1C1=V2C2
V × εA/d=V' × 2εA/d
VεA/d = 2V'εA/d
Then the εA/d cancels on both sides and remains
V=2V'
Then, V'=V/2
The potential difference is half when the distance between the parallel plate capacitor was reduce to d/2