Here, ball is released... and it is in free fall means with zero initial velocity.
We know, s = ut + 1/2 at²
Here, s = 1000 m
u = 0
a = 10 m/s2
Substitute their values,
1000 = 0 + 1/2 * 10 * t²
2000 = 10 * t²
t² = 2000 /10
t = √200
t = 14.14 s
In short, Your Answer would be 14.14 seconds
Hope this helps!
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The given data is as follows.
Velocity of bullet,
= 814.8 m/s
Observer distance from marksman, d = 24.7 m
Let us assume that time necessary for report of rifle to reach the observer is t and will be calculated as follows.
t =
(velocity in air = 343 m/s)
= 0.072 sec
Now, before the observer hears the report the distance traveled by the bullet is as follows.

= 
= 58.66
= 59 (approx)
Thus, we can conclude that each bullet will travel a distance of 59 m.
Answer:
As a result, light travels fastest in empty space, and travels slowest in solids. In glass, for example, light travels about 197,000 km/s.
Explanation:
Answer:
The frequency of the oscillation is 2.45 Hz.
Explanation:
Given;
mass of the spring, m = 0.5 kg
total mechanical energy of the spring, E = 12 J
Determine the spring constant, k as follows;
E = ¹/₂kA²
kA² = 2E
k = (2E) / (A²)
k = (2 x 12) / (0.45²)
k = 118.519 N/m
Determine the angular frequency, ω;

Determine the frequency of the oscillation;
ω = 2πf
f = (ω) / (2π)
f = (15.396) / (2π)
f = 2.45 Hz
Therefore, the frequency of the oscillation is 2.45 Hz.