1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
4 years ago
8

A 1000 kg elevator is accelerated upward at a rate of 0.70 m/s2. What is the tension in the cable pulling the elevator upward wh

en it experiences this acceleration?
Physics
2 answers:
Masteriza [31]4 years ago
5 0

Answer:

Tension is also known as Force...

and Force is mass× acceleration.

so....1000×0.70=700N

AlekseyPX4 years ago
3 0

Answer:

\Huge \boxed{\mathrm{700 \ N}}

Explanation:

Tension is the force exerted.

\sf Force \ (N) = mass \ (kg) \cdot acceleration \ (m/s^2)

F=1000 \cdot 0.70

F=700

The tension in the cable is 700 N.

You might be interested in
A major contemporary learning view of personality which holds that personality traits result from a
DIA [1.3K]

Answer:

21

Explanation:

21 is x because 211211 1 1 1 1  1aghh

3 0
3 years ago
Read 2 more answers
A concert loudspeaker suspended high off the ground emits 34 W of sound power. A small microphone with a 1.0 cm2 area is 44 m fr
rjkz [21]

Answer:

<u>Part A</u>

I = 1.4 mW/m²  

<u>Part B</u>

β = 91.46 dB

Explanation:

<u>Part A</u>

Sound intensity is the power per unit area of sound waves in a direction perpendicular to that area. Sound intensity is also called acoustic intensity.

For a spherical sound wave, the sound intensity is given by;

                                            I = \frac{P}{A}

                                            I = \frac{P}{4\pi r^{2}}

Where;

P is the source of power in watts (W)

I is the intensity of the sound in watt per square meter (W/m2)

r is the distance r away

Given:

P = 34 W,

A = 1.0 cm²

r = 44 m

The sound intensity at the position of the microphone is calculated to be;

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = \frac{34}{4\pi (44)^{2}}

                                     I = 0.0013975 W/m²

                                 ≈  I = 0.0014 W/m² = 1.4 × 10⁻³ W/m²

                                     I = 1.4 mW/m²

The sound intensity at the position of the microphone is 1.4 mW/m².

<u>Part B</u>

Sound intensity level or acoustic intensity level is the level of the intensity of a sound relative to a reference value.  It is a a logarithmic quantity. It is denoted by β and expressed in nepers, bels, or decibels.

Sound intensity level is calculated as;  

                                    β = 10log_{10}\frac{I}{I_{0}}  dB

Where,

β is the Sound intensity level in decibels (dB)

I is the sound intensity;

I₀ is the reference sound intensity;

By pluging-in, I₀ is 1.0 × 10⁻¹² W/m²

           ∴        β = 10log_{10}\frac{1.4 * 10^{-3} W/m^{2}}{1.0 * 10^{-12} W/m^{2}}

                      β = 10log_{10} (1.4 * 10^{9})

                      β = 91.46 dB

The sound intensity level at the position of the microphone is 91.46 dB.                

4 0
3 years ago
uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is station
Alex787 [66]

Answer:

The magnitude of the tangential velocity is v= 0.868 m/s

The magnitude of the resultant acceleration at that point is  a = 4.057 m/s^2

Explanation:

From the question we are told that

      The mass of the uniform disk is m_d = 40.0kg

       The radius of the uniform disk is R_d = 0.200m

       The force applied on the disk is F_d = 30.0N

Generally the angular speed i mathematically represented as

             w = \sqrt{2 \alpha  \theta}

Where \theta is the angular displacement given from the question as

           \theta  = 0.2000 rev = 0.2000 rev * \frac{2 \pi \ rad }{1 rev}

                 =1.257\  rad

   \alpha is the angular acceleration which is mathematically represented as

                    \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

    The moment of inertial is mathematically represented as

                     I = \frac{1}{2} m_dR^2_d

Substituting values

                    I = 0.5 * 40 * 0.200^2

                        = 0.8kg \cdot m^2

Considering the equation for angular acceleration

               \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

Substituting values

               \alph\alpha = \frac{(30.0)(0.200)}{0.8}

                   = 7.5 rad/s^2

Considering the equation for angular velocity

    w = \sqrt{2 \alpha  \theta}

Substituting values

     w =\sqrt{2 * (7.5) * 1.257}

         = 4.34 \ rad/s

The tangential velocity of a given point on the rim is mathematically represented as

                 v = R_d w

Substituting values

                    = (0.200)(4.34)

                     v= 0.868 m/s

The radial acceleration at hat point  is mathematically represented as

            \alpha_r = \frac{v^2}{R}

                  = \frac{0.868^2}{0.200^2}

                 = 3.7699 \ m/s^2

The tangential acceleration at that point is mathematically represented as

               \alpha _t = R \alpha

Substituting values

           \alpha _t = (0.200) (7.5)

                 = 1.5 m/s^2

The magnitude of resultant acceleration at that point is

                 a = \sqrt{\alpha_r ^2+ \alpha_t^2 }

Substituting values

                a = \sqrt{(3.7699)^2 + (1.5)^2}

                   a = 4.057 m/s^2

         

7 0
3 years ago
A block lies on a horizontal frictionless surface. A horizontal force of 100 N is applied to the block giving rise to an acceler
KIM [24]

Answer:

(a) m = 33.3 kg

(b) d = 150 m

(c) vf = 30 m/s

Explanation:

Newton's second law to the block:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

Data

F= 100 N

a= 3.0 m/s²

(a) Calculating of the  mass of the block:

We replace dta in the formula (1)

F = m*a

100 =  m*3

m = 100 / 3

m = 33.3 kg

Kinematic analysis

Because the block  moves with uniformly accelerated movement we apply the following formulas:

d= v₀t+ (1/2)*a*t² Formula (2)

vf= v₀+a*t   Formula (3)

Where:  

d:displacement in meters (m)  

t : time interval in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s²

Data

a= 3.0 m/s²

v₀= 0

t = 10 s

(b) Distance the block will travel if the force is applied for 10 s

We replace dta in the formula (2):

d= v₀t+ (1/2)*a*t²

d = 0+ (1/2)*(3)*(10)²

d =150 m

(c) Calculate the speed of the block after the force has been applied for 10 s

We replace dta in the formula (3):

vf= v₀+a*t

vf= 0+(3*(10)

vf= 30 m/s

4 0
3 years ago
What are the complementary colors of magenta? Blue? And cyan?
zysi [14]

Answer:

Magneta is a mix of blue and red and is a secondary colour.

Explanation:

As we can see green is the complementary colour of Magneta.Complementary colours are the pairs of colours which when combined cancel each other out. This means that when combined they produce a grayscale colour like white or black .

4 0
3 years ago
Other questions:
  • a 6-kg and a 4-kg ball are acted on by forces of equal size. if the large ball accelerates at 2 m/s2 what acceleration will the
    9·2 answers
  • 1. A signal source has an open-circuit voltage of 1V, and a short-circuit current of10mA. What is the source resistance
    12·1 answer
  • Where do scientists believe the missing carbon is going? Why are they not sure?
    5·1 answer
  • An airplane flies for 1.25 hours with a constant speed of 1080 km/hr and then for another 2.5 hours with a constant speed of 984
    14·2 answers
  • What happens to your kinectic energy when your gravitational potential energy decreases?
    10·1 answer
  • The density of a solid or liquid material divided by the density of water is called
    12·1 answer
  • A car driver sees a rabbit on the road. The driver makes an emergency stop after he sees the rabbit. Figure given shows the spee
    9·2 answers
  • You do 45.0 joules of work and 3.00 seconds how much power do you use​
    7·1 answer
  • Help me please Am I correct???​
    14·1 answer
  • Anyone know the answer?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!