Yes that is correct. We know this because 4.00 x 10 4 Pa is constant. If you have 2.00×10−3m3 then you do the following: (2.00×10^−3)(4.00×10^<span> 4) = </span>8.00×10^−3. That is how you get your answer
Answer:
D)Not enough information
Explanation:
According to Pascal's principle, the pressure exerted on the two pistons is equal:

Pressure is given by the ratio between force F and area A, so we can write

The force exerted on each piston is just equal to the weight of the corresponding mass:
, where m is the mass and g is the gravitational acceleration. So the equation becomes

Now we can rewrite the mass as the product of volume, V, times density, d:

We also know that 
So we can further re-arrange the equation (and simplify g as well):


We are also told that block B has bigger volume than block A:
. However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.
"The table represents the speed of a car in a northern direction over several seconds. Column 1 would be on the x-axis, and Column 2 would be on the y-axis."
typical plot is speed or velocity on the y-axis n time on the x-axis so the ans is Column 1 should be titled “Time,” and Column 2 should be titled “Velocity.”
Answer:
The number of protons in the atom!
Explanation:
Answer: The forces acting on both of them will increase in magnitude.
Explanation:
According to Coulomb's law, the electrostatic force between two bodies is proportional to the product of their two charges. If the charge on A is increased this product increases in size (it must have been non-zero to begin with, since there was a force between them at first). Thus, the force between them rises.