A device that does work with one movement and changes the size or direction of a force is a simple machine.
In physics<span>, a </span>force<span> is said to do </span>work if, when acting, there is a displacement of the point of application in the direction of the force. For example, when a ball is held above the ground and then dropped, the work done on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). so in the proble, <span>She does NO work since the force she applies to the case is vertical and the direction of motion is horizontal. Work is the force times the parallel distance</span>
Answer:
The distance from the top of the stick would be 2l/3
Explanation:
Let the impulse 'FΔt' acts as a distance 'x' from the hinge 'H'. Assume no impulsive reaction is generated at 'H'. Let the angular velocity of the rod about 'H' just after the applied impulse be 'W'. Also consider that the center of percussion is the point on a bean attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot.
Applying impulse momentum theorem for linear momentum.
FΔt = m(Wl/2), since velocity of center of mass of rod = Wl/2
Similarly applying impulse momentum theorem per angular momentum about H
FΔt * x = I * W
Where FΔt * x represents the impulsive torque and I is the moment of inertia
F Δt.x = (ml² . W)/3
Substituting FΔt
M(Wl/2) * x = (ml². W)/3
1/x = 3/2l
x = 2l/3
The Splitting of a nucleus
Answer: In a logical Pace forum subject to the distance
Explanation: