Answer:
standards
Explanation:
Based on the information provided within the question in regards to the situation at hand it can be said that Joanna is demonstrating a standards gap. this is a gap caused by the difference between the customer service standards a company has created for itself and the expectations the company believes that the customers have for that company. Since Joanna did not tell all the servers of the customers expectations then the ones who do not know will not be able to provide this service to those customers, thus the restaurant will not be able to meet it's customer service standards.
Answer:
Explanation:
Given
mass 
Force 
door knob is located at a distance of r=0.8 m from axis
Angular acceleration of door 
Torque 
where I=moment of inertia


Answer:
distance difference would a) increase
speed difference would f) stay the same
Explanation:
Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.
Their equations of motion for distance and velocities are




Their difference in distance are therefore:


(As

So as time progress t increases, Δs would also increases, their distance becomes wider with time.
Similarly for their velocity difference


Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.
This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.
<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
<h3><u>Answer;</u></h3>
100 times
<h3><u>Explanation;</u></h3>
- The largest stars are 100 times the mass of the Sun.
- <u>The giant stars are about 10 to 100 times the radius of the sun</u>, which means they are 100 times brighter than the sun.
- <em><u>The largest known star in terms of mass and brightness is known as the Pistol Star. It is believed to be 100 times as massive as our Sun, and 10,000,000 times as bright.</u></em>