1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
12

A plane electromagnetic wave with wavelength 3.0 m, travels in free space in the+xdirection with its electric field vector~E, of

amplitude 300 V/m, directed along they-axis.(a) What is the frequencyfof the wave?
Physics
1 answer:
mart [117]3 years ago
6 0

Answer:

    f =1 10⁸ Hz

Explanation:

The speed of an electromagnetic wave is given by

          c = Lam f

In our case, the wavelength is 3.0 m, so we can clear the frequency

         f = c / Lam

         f = 3 108/3.

         f =1 10⁸ Hz

You might be interested in
A grinding wheel is a uniform cylinder with a radius of 8.65 cm and a mass of 0.400 kg . Calculate its moment of inertia about i
anyanavicka [17]

Answer:

I = 1.5*10⁻³ kg*m²

Explanation:

  • It can be showed that the moment of inertia (or rotational inertia) for a uniform cylinder of mass m and radius r, respect an longitudinal axis going through its center (parallel to the height of the cylinder) can be written as follows:

       I = \frac{1}{2}*m*r^{2}  = \frac{1}{2}*0.400 kg*(0.0865m)^{2}  = 1.5e-3 kg*m2

3 0
3 years ago
What is the speed of an 800 kg automobile if it has a kinetic energy of 9.00 x 10^J?
MA_775_DIABLO [31]

Ek = 1/2 mv^2

9 × 10^4 = 1/2 × 800 × v^2

9 × 10^4/400 = 400 v^2 / 400

9 × 10^4/400 = v^2

√225 = v

15 ms⁻¹ = v

That's the only way I know how to work it out

I think in this case velocity and speed would be considered the same because me

s = d/t and v=d/t

one is distance travelled and the other is displacement of a body

7 0
2 years ago
A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Ne
Furkat [3]

Answer:

the frequency of this mode of vibration is 138.87 Hz

Explanation:

Given;

length of the copper wire, L = 1 m

mass per unit length of the copper wire, μ = 0.0014 kg/m

tension on the wire, T = 27 N

number of segments, n = 2

The frequency of this mode of vibration is calculated as;

F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz

Therefore, the frequency of this mode of vibration is 138.87 Hz

7 0
3 years ago
rickey approaches third base. He dives head first, hitting the ground at 6.75 m/s and reaching the base at 5.91 m/s in 2.5 secon
Gekata [30.6K]

Answer:

15.825 m

Explanation:

t = Time taken = 2.5 s

u = Initial velocity = 6.75 m/s

v = Final velocity = 5.91 m/s

s = Displacement

a = Acceleration

Equation of motion

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{5.91-6.75}{2.5}\\\Rightarrow a=-0.336\ m/s^2

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{5.91^2-6.75^2}{2\times -0.336}\\\Rightarrow s=15.825\ m

The distance Rickey slides across the ground before touching the base is 15.825 m

4 0
3 years ago
At 1 atm pressure, the heat of sublimation of gallium is 277 kj/mol and the heat of vaporization is 271 kj/mol. to the correct n
Andreyy89
Below are the choices that can be found elsewhere:

 a. 268 kJ 
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have: 

<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>

<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>

<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>

<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>

<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>

<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>
7 0
3 years ago
Other questions:
  • A 16-kg scooter is moving at a speed of 7 m/s. The scooter’s speed doubles. What is the scooter’s kinetic energy when its speed
    5·1 answer
  • Use the drop-down menus to complete the statements.
    14·2 answers
  • In which scenario is elastic potential energy present?
    8·2 answers
  • A uniform rod of mass M and length L can pivot freely at one end. Initially, the rod is oriented vertically above the pivot, in
    7·1 answer
  • The cheetah is one of the fastest accelerating animals, for it can go from rest to 28.0 m/s in 5.20 s. If its mass is 100 kg, de
    14·1 answer
  • Does energy or matter ever disappear? Explain.
    7·2 answers
  • Each of the boxes starts at rest and is then pulled for 2.0 m across a level, frictionless floor by a rope with the noted force.
    13·1 answer
  • An object moving north with an initial velocity of 14 m/s accelerates 5 m/s2 for 20 seconds. What is the final velocity of the o
    14·2 answers
  • Can anyone help me with this question?
    8·1 answer
  • Michael's house is 5.0 km away from his school. How long would it take him to go ti school, riding a bus, if its velocity is 25
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!