Answer:
0.084 kg
Explanation:
I = 0.80 N-s (East wards) = 0.80 i N-s
u = 3.8 m/s = - 3.8 i m/s
v = 5.7 m/s = 5.7 i m/s
Let m be the mass of bat.
I = m (v - u)
0.8 i = m ( 5.7 i + 3.8 i)
0.8 i = m x 9.5 i
m = 0.084 kg
Answer:
potential energy
kinetic energy
thermal energy
Explanation:
The book's potential energy can be released by knocking it off the table. As the book falls, its potential energy is converted to kinetic energy. When the book hits the floor this kinetic energy is converted into heat and sound by the impact.
its important so we can learn things about the species
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
No, the distance from the last stop to the school and the time it takes to travel that distance are required.