Answer: pH = 3.15
Explanation: Solved in the attached picture.
Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.
<span>Answer: D. They all have the same number of electrons in the electron cloud</span>
Answer:
2.61 g of NO will be formed
The limiting reagent is the O₂
Explanation:
The reaction is:
4NH₃ + 5O₂ → 4NO + 6H₂O
We convert the mass of the reactants to moles:
3.25g / 17 g/mol = 0.191 moles of NH₃
3.50g / 32 g/mol =0.109 moles of O₂
Let's determine the limiting reactant by stoichiometry:
4 moles of ammonia react with 5 moles of oxygen
Then, 0.191 moles of ammonia will react with (0.191 . 5) / 4 = 0.238 moles of oxygen. We only have 0.109 moles of O₂ and we need 0.238, so as the oxygen is not enough, this is the limiting reagent
Ratio with NO is 5:4
5 moles of oxygen produce 4 moles of NO
0.109 moles will produce (0.109 . 4)/ 5 = 0.0872 moles of NO
We convert the moles to mass, to get the answer
0.0872 mol . 30g / 1 mol = 2.61 g
Answer:
Chlorine is more likely to steal a valence electron from sodium.
Explanation:
Sodium is number 11 on the periodic table with one valence electron. Belonging to the first group, it's one of the alkali metal, which are known to be highly reactive. Chlorine is number 17 with seven valence electrons, and it's in the second-to-last group of halogens--also very reactive.
Considering that elements with one valence electron are just about 100% likely to give up electrons to reach a stable state, sodium would be the element that is more likely to lose its valence electron to chlorine. In other words, chlorine would be the electron thief.