Answer:
Explanation:
The equation is given as:
CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O
This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:
Step 1:
Initial formation of the hemiacetal which takes several steps
Step 2:
Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)
Step 3:
As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.
The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.
Step 4:
An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.
Step 5:
Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.
Attached are the Steps 1 - 5 mechanism below
The SA node, the cardiac center in the medulla oblongata, and the endocrine system
Answer:
B-2
Explanation:
In the graph you can so that two of the shapes ae fully black, that means that they are color blind, the half colored ones means they are a carrier but they aren't color blind. So two males in the offspring are color blind.
Answer:
Option B:Publishing scientific journals
Explanation:
We are told that Lindsey is trying to gain credibility for her studies.
Since she completed her experiment and discussed her finding with colleagues, the most logical next step would be to publish scientific journals. This is because the other options given are not steps that should be taken because she has completed the research and therefore has no need to speak at a conference next nor even create new charts which they must have done during the research. No need for her to make sure the topic is popular.
Option B is correct
Answer:
I = 1.23 A
Explanation:
Given that,
The resistance of the lightbulb, R = 96.8 Ω
Voltage, V = 120 V
We need to find the current flows through the lightbulb. Let the current be I. We can use the ohm's law to find it i.e.
So, the current flows through the bulb is 1.23 A.